Suppr超能文献

酶促速度对底物解离速率的依赖性。

Dependence of the Enzymatic Velocity on the Substrate Dissociation Rate.

机构信息

Mathematical and Statistical Computing Laboratory, Division of Computational Bioscience, Center for Information Technology, National Institutes of Health , Bethesda, Maryland 20892, United States.

Laboratory of Chemical Physics, National institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , Bethesda, Maryland 20892, United States.

出版信息

J Phys Chem B. 2017 Apr 20;121(15):3437-3442. doi: 10.1021/acs.jpcb.6b09055. Epub 2016 Dec 1.

Abstract

Enzymes are biological catalysts that play a fundamental role in all living systems by supporting the selectivity and the speed for almost all cellular processes. While the general principles of enzyme functioning are known, the specific details of how they work at the microscopic level are not always available. Simple Michaelis-Menten kinetics assumes that the enzyme-substrate complex has only one conformation that decays as a single exponential. As a consequence, the enzymatic velocity decreases as the dissociation (off) rate constant of the complex increases. Recently, Reuveni et al. [ Proc. Natl. Acad. Sci. USA 2014 , 111 , 4391 - 4396 ] showed that it is possible for the enzymatic velocity to increase when the off rate becomes higher, if the enzyme-substrate complex has many conformations which dissociate with the same off rate constant. This was done using formal mathematical arguments, without specifying the nature of the dynamics of the enzyme-substrate complex. In order to provide a physical basis for this unexpected result, we derive an analytical expression for the enzymatic velocity assuming that the enzyme-substrate complex has multiple states and its conformational dynamics is described by rate equations with arbitrary rate constants. By applying our formalism to a complex with two conformations, we show that the unexpected off rate dependence of the velocity can be readily understood: If one of the conformations is unproductive, the system can escape from this "trap" by dissociating, thereby giving the enzyme another chance to form the productive enzyme-substrate complex. We also demonstrate that the nonmonotonic off rate dependence of the enzymatic velocity is possible not only when all off rate constants are identical, but even when they are different. We show that for typical experimentally determined rate constants, the nonmonotonic off rate dependence can occur for micromolar substrate concentrations. Finally, we discuss the relation of this work to the problem of optimizing the flux through singly occupied membrane channels and transporters.

摘要

酶是生物催化剂,在所有生命系统中通过支持几乎所有细胞过程的选择性和速度起着根本作用。虽然酶的作用的一般原则是已知的,但它们在微观水平上的具体工作细节并不总是可用。简单的米氏-门坦动力学假设酶-底物复合物只有一种构象,以单指数衰减。因此,随着复合物的离解(脱离)速率常数增加,酶的速度降低。最近,Reuveni 等人[Proc. Natl. Acad. Sci. USA 2014, 111, 4391-4396]表明,如果酶-底物复合物具有许多以相同离解速率常数解离的构象,则当离解速率增加时,酶的速度有可能增加。这是通过使用形式数学论证来完成的,而没有指定酶-底物复合物的动力学性质。为了为这个意外的结果提供物理基础,我们假设酶-底物复合物具有多个状态,并且其构象动力学由具有任意速率常数的速率方程来描述,为酶的速度推导了一个解析表达式。通过将我们的形式主义应用于具有两个构象的复合物,我们表明速度的意外离解速率依赖性可以很容易理解:如果一种构象是无生产力的,系统可以通过离解从这个“陷阱”中逃脱,从而为酶提供另一个形成有生产力的酶-底物复合物的机会。我们还表明,不仅当所有离解速率常数相同时,而且甚至当它们不同时,酶的速度的非单调离解速率依赖性都是可能的。我们表明,对于典型的实验确定的速率常数,非单调离解速率依赖性可以在微摩尔底物浓度下发生。最后,我们讨论了这项工作与优化单占据膜通道和转运体通量的问题的关系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6137/5577799/a66a53325ab4/nihms897580f1.jpg

相似文献

1
Dependence of the Enzymatic Velocity on the Substrate Dissociation Rate.酶促速度对底物解离速率的依赖性。
J Phys Chem B. 2017 Apr 20;121(15):3437-3442. doi: 10.1021/acs.jpcb.6b09055. Epub 2016 Dec 1.
4
Dynamic disorder in quasi-equilibrium enzymatic systems.准平衡酶系统中的动态无序。
PLoS One. 2010 Aug 24;5(8):e12364. doi: 10.1371/journal.pone.0012364.
6
Kinetic View of Enzyme Catalysis from Enhanced Sampling QM/MM Simulations.从增强采样QM/MM 模拟看酶催化的动力学观点。
J Chem Inf Model. 2024 May 13;64(9):3953-3958. doi: 10.1021/acs.jcim.4c00475. Epub 2024 Apr 12.
8
Michaelis-Menten equation and detailed balance in enzymatic networks.米氏方程和酶网络中的详细平衡。
J Phys Chem B. 2011 May 12;115(18):5493-8. doi: 10.1021/jp110924w. Epub 2011 Apr 5.
10
Single-molecule Michaelis-Menten equations.单分子米氏方程。
J Phys Chem B. 2005 Oct 20;109(41):19068-81. doi: 10.1021/jp051490q.

引用本文的文献

本文引用的文献

1
Michaelis-Menten reaction scheme as a unified approach towards the optimal restart problem.米氏反应方案作为解决最优重启问题的统一方法。
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):060101. doi: 10.1103/PhysRevE.92.060101. Epub 2015 Dec 14.
3
Role of substrate unbinding in Michaelis-Menten enzymatic reactions.底物释放在米氏酶促反应中的作用。
Proc Natl Acad Sci U S A. 2014 Mar 25;111(12):4391-6. doi: 10.1073/pnas.1318122111. Epub 2014 Mar 10.
4
Sizing up single-molecule enzymatic conformational dynamics.测定单分子酶构象动力学。
Chem Soc Rev. 2014 Feb 21;43(4):1118-43. doi: 10.1039/c3cs60191a.
7
Michaelis-Menten equation and detailed balance in enzymatic networks.米氏方程和酶网络中的详细平衡。
J Phys Chem B. 2011 May 12;115(18):5493-8. doi: 10.1021/jp110924w. Epub 2011 Apr 5.
9
Effects of jamming on nonequilibrium transport times in nanochannels.阻塞对纳米通道中非平衡输运时间的影响。
Phys Rev Lett. 2009 Sep 18;103(12):128103. doi: 10.1103/PhysRevLett.103.128103. Epub 2009 Sep 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验