Suppr超能文献

多占据和粒子间相互作用对通过狭窄通道的选择性传输的影响:理论与实验

Effects of multiple occupancy and interparticle interactions on selective transport through narrow channels: theory versus experiment.

作者信息

Zilman Anton

机构信息

Theoretical Biology and Biophysics Group and Center for Nonlinear Studies, Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico, USA.

出版信息

Biophys J. 2009 Feb 18;96(4):1235-48. doi: 10.1016/j.bpj.2008.09.058.

Abstract

Many biological and artificial transport channels function without direct input of metabolic energy during a transport event and without structural rearrangements involving transitions from a closed to an open state. Nevertheless, such channels are able to maintain efficient and selective transport. It has been proposed that attractive interactions between the transported molecules and the channel can increase the transport efficiency and that the selectivity of such channels can be based on the strength of the interaction of the specifically transported molecules with the channel. Herein, we study the transport through narrow channels in a framework of a general kinetic theory, which naturally incorporates multiparticle occupancy of the channel and non-single-file transport. We study how the transport efficiency and the probability of translocation through the channel are affected by interparticle interactions in the confined space inside the channel, and establish conditions for selective transport. We compare the predictions of the model with the available experimental data and find good semiquantitative agreement. Finally, we discuss applications of the theory to the design of artificial nanomolecular sieves.

摘要

许多生物和人工运输通道在运输过程中无需直接输入代谢能量,也无需涉及从关闭状态到开放状态转变的结构重排即可发挥作用。然而,此类通道能够维持高效且选择性的运输。有人提出,被运输分子与通道之间的吸引相互作用可提高运输效率,并且此类通道的选择性可基于特定运输分子与通道相互作用的强度。在此,我们在一个通用动力学理论框架内研究通过狭窄通道的运输,该理论自然地纳入了通道的多粒子占据和非单文件运输。我们研究通道内部受限空间中的粒子间相互作用如何影响运输效率和通过通道转运的概率,并建立选择性运输的条件。我们将模型的预测结果与现有的实验数据进行比较,发现有良好的半定量一致性。最后,我们讨论该理论在人工纳米分子筛设计中的应用。

相似文献

2
Effects of jamming on nonequilibrium transport times in nanochannels.
Phys Rev Lett. 2009 Sep 18;103(12):128103. doi: 10.1103/PhysRevLett.103.128103. Epub 2009 Sep 17.
3
Enhancement of transport selectivity through nano-channels by non-specific competition.
PLoS Comput Biol. 2010 Jun 10;6(6):e1000804. doi: 10.1371/journal.pcbi.1000804.
4
Role of the potential landscape on the single-file diffusion through channels.
J Chem Phys. 2014 Dec 14;141(22):224901. doi: 10.1063/1.4903175.
5
Emerging issues of connexin channels: biophysics fills the gap.
Q Rev Biophys. 2001 Aug;34(3):325-472. doi: 10.1017/s0033583501003705.
6
Theory of single-file multiparticle diffusion in narrow pores.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Sep;80(3 Pt 1):031118. doi: 10.1103/PhysRevE.80.031118. Epub 2009 Sep 16.
7
Theory of transport noise in membrane channels with open-closed kinetics.
Biophys Struct Mech. 1979 Mar 21;5(1):91-106. doi: 10.1007/BF00535775.
8
Thermodynamics of competitive molecular channel transport: application to artificial nuclear pores.
PLoS One. 2010 Dec 13;5(12):e15160. doi: 10.1371/journal.pone.0015160.
9
Transport properties of single-file pores with two conformational states.
Biophys J. 1994 Sep;67(3):996-1006. doi: 10.1016/S0006-3495(94)80565-X.
10
A New Poisson-Nernst-Planck Model with Ion-Water Interactions for Charge Transport in Ion Channels.
Bull Math Biol. 2016 Aug;78(8):1703-26. doi: 10.1007/s11538-016-0196-7. Epub 2016 Aug 1.

引用本文的文献

1
Evolutionary trajectory for nuclear functions of ciliary transport complex proteins.
Microbiol Mol Biol Rev. 2024 Sep 26;88(3):e0000624. doi: 10.1128/mmbr.00006-24. Epub 2024 Jul 12.
2
Counter-Intuitive Features of Particle Dynamics in Nanopores.
Int J Mol Sci. 2023 Nov 3;24(21):15923. doi: 10.3390/ijms242115923.
3
Self-regulation of the nuclear pore complex enables clogging-free crowded transport.
Proc Natl Acad Sci U S A. 2023 Feb 14;120(7):e2212874120. doi: 10.1073/pnas.2212874120. Epub 2023 Feb 9.
5
Physics of the Nuclear Pore Complex: Theory, Modeling and Experiment.
Phys Rep. 2021 Jul 25;921:1-53. doi: 10.1016/j.physrep.2021.03.003. Epub 2021 Mar 24.
7
Molecular determinants of large cargo transport into the nucleus.
Elife. 2020 Jul 21;9:e55963. doi: 10.7554/eLife.55963.
8
Direct detection of molecular intermediates from first-passage times.
Sci Adv. 2020 May 1;6(18):eaaz4642. doi: 10.1126/sciadv.aaz4642. eCollection 2020 May.
10
Mapping Intrachannel Diffusive Dynamics of Interacting Molecules onto a Two-Site Model: Crossover in Flux Concentration Dependence.
J Phys Chem B. 2018 Dec 13;122(49):10996-11001. doi: 10.1021/acs.jpcb.8b04371. Epub 2018 Jun 29.

本文引用的文献

1
Artificial nanopores that mimic the transport selectivity of the nuclear pore complex.
Nature. 2009 Feb 19;457(7232):1023-7. doi: 10.1038/nature07600. Epub 2008 Dec 21.
2
Synthetic mimic of selective transport through the nuclear pore complex.
Nano Lett. 2008 Nov;8(11):3728-34. doi: 10.1021/nl801975q. Epub 2008 Oct 25.
3
Molecular discrimination inside polymer nanotubules.
Nat Nanotechnol. 2008 Feb;3(2):112-7. doi: 10.1038/nnano.2008.6. Epub 2008 Feb 3.
4
Solid-state nanopore channels with DNA selectivity.
Nat Nanotechnol. 2007 Apr;2(4):243-8. doi: 10.1038/nnano.2007.78. Epub 2007 Apr 1.
5
Towards reconciling structure and function in the nuclear pore complex.
Histochem Cell Biol. 2008 Feb;129(2):105-16. doi: 10.1007/s00418-007-0371-x. Epub 2008 Jan 29.
7
Reversibility in nucleocytoplasmic transport.
Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12743-8. doi: 10.1073/pnas.0702690104. Epub 2007 Jul 23.
8
Efficiency, selectivity, and robustness of nucleocytoplasmic transport.
PLoS Comput Biol. 2007 Jul;3(7):e125. doi: 10.1371/journal.pcbi.0030125.
9
Steric selectivity in Na channels arising from protein polarization and mobile side chains.
Biophys J. 2007 Sep 15;93(6):1960-80. doi: 10.1529/biophysj.107.105478. Epub 2007 May 25.
10
Channel-facilitated molecular transport across membranes: attraction, repulsion, and asymmetry.
Phys Rev Lett. 2007 Jan 26;98(4):048105. doi: 10.1103/PhysRevLett.98.048105.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验