Suppr超能文献

采用鲜叶解吸常压化学电离质谱对 5 种樟科樟属化学型的分子分化研究。

Molecular differentiation of five Cinnamomum camphora chemotypes using desorption atmospheric pressure chemical ionization mass spectrometry of raw leaves.

机构信息

School of Life Sciences, Nanchang University, Nanchang, Jiangxi 330031, China.

State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi 330031, China.

出版信息

Sci Rep. 2017 Apr 20;7:46579. doi: 10.1038/srep46579.

Abstract

Five chemotypes, the isoborneol-type, camphora-type, cineole-type, linalool-type and borneol-type of Cinnamomum camphora (L.) Presl have been identified at the molecular level based on the multivariate analysis of mass spectral fingerprints recorded from a total of 750 raw leaf samples (i.e., 150 leaves equally collected for each chemotype) using desorption atmospheric pressure chemical ionization mass spectrometry (DAPCI-MS). Both volatile and semi-volatile metabolites of the fresh leaves of C. camphora were simultaneously detected by DAPCI-MS without any sample pretreatment, reducing the analysis time from half a day using conventional methods (e.g., GC-MS) down to 30 s. The pattern recognition results obtained using principal component analysis (PCA) was cross-checked by cluster analysis (CA), showing that the difference visualized by the DAPCI-MS spectral fingerprints was validated with 100% accuracy. The study demonstrates that DAPCI-MS meets the challenging requirements for accurate differentiation of all the five chemotypes of C. camphora leaves, motivating more advanced application of DAPCI-MS in plant science and forestry studies.

摘要

基于对总共 750 个原始叶片样本(即每个化学型各采集 150 个叶片)的质谱指纹图谱的多元分析,利用解吸常压化学电离质谱(DAPCI-MS),从分子水平上鉴定了 5 种樟属(L.)樟化学型,即异龙脑型、樟脑型、桉油醇型、芳樟醇型和龙脑型。DAPCI-MS 无需任何样品预处理,可同时检测新鲜樟叶的挥发性和半挥发性代谢物,分析时间从使用传统方法(例如 GC-MS)的半天缩短至 30s。主成分分析(PCA)得到的模式识别结果通过聚类分析(CA)进行交叉检查,表明 DAPCI-MS 光谱指纹图可视化的差异具有 100%的准确性。该研究表明,DAPCI-MS 满足准确区分所有 5 种樟属叶片化学型的苛刻要求,激励了 DAPCI-MS 在植物科学和林业研究中的更先进应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/501f/5397862/a13fc1acdeae/srep46579-f2.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验