Suppr超能文献

通过刚性残基扫描模拟揭示 LOV 蛋白 VIVID 的隐藏构象空间。

Revealing Hidden Conformational Space of LOV Protein VIVID Through Rigid Residue Scan Simulations.

机构信息

Department of Chemistry, Center for Drug Discovery, Design, and Delivery(CD4), Center for Scientific Computation, Southern Methodist University, Dallas, Texas 75275, United States of America.

出版信息

Sci Rep. 2017 Apr 20;7:46626. doi: 10.1038/srep46626.

Abstract

VIVID(VVD) protein is a Light-Oxygen-Voltage(LOV) domain in circadian clock system. Upon blue light activation, a covalent bond is formed between VVD residue Cys108 and its cofactor flavin adenine dinucleotide(FAD), and prompts VVD switching from Dark state to Light state with significant conformational deviation. However, the mechanism of this local environment initiated global protein conformational change remains elusive. We employed a recently developed computational approach, rigid residue scan(RRS), to systematically probe the impact of the internal degrees of freedom in each amino acid residue of VVD on its overall dynamics by applying rigid body constraint on each residue in molecular dynamics simulations. Key residues were identified with distinctive impacts on Dark and Light states, respectively. All the simulations display wide range of distribution on a two-dimensional(2D) plot upon structural root-mean-square deviations(RMSD) from either Dark or Light state. Clustering analysis of the 2D RMSD distribution leads to 15 representative structures with drastically different conformation of N-terminus, which is also a key difference between Dark and Light states of VVD. Further principle component analyses(PCA) of RRS simulations agree with the observation of distinctive impact from individual residues on Dark and Light states.

摘要

VIVID(VVD)蛋白是生物钟系统中的一个光氧电压(LOV)结构域。在蓝光激活后,VVD 残基半胱氨酸 108 与辅因子黄素腺嘌呤二核苷酸(FAD)之间形成共价键,促使 VVD 从暗状态切换到亮状态,构象明显偏离。然而,这种局部环境引发的全局蛋白质构象变化的机制仍然难以捉摸。我们采用了最近开发的计算方法——刚性残基扫描(RRS),通过在分子动力学模拟中对每个残基施加刚体约束,系统地探测 VVD 中每个氨基酸残基的内部自由度对其整体动力学的影响。确定了对暗态和亮态分别具有独特影响的关键残基。所有模拟在结构均方根偏差(RMSD)偏离暗态或亮态的二维(2D)图谱上显示出广泛的分布。对 2D RMSD 分布的聚类分析产生了 15 个具有截然不同的 N 端构象的代表性结构,这也是 VVD 暗态和亮态之间的关键区别。进一步对 RRS 模拟的主成分分析(PCA)也与单个残基对暗态和亮态的独特影响的观察结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/39a1/5397860/e82e0337af97/srep46626-f1.jpg

相似文献

2
Conformational switching in the fungal light sensor Vivid.
Science. 2007 May 18;316(5827):1054-7. doi: 10.1126/science.1137128.
3
Light-induced differences in conformational dynamics of the circadian clock regulator VIVID.
J Mol Biol. 2014 Feb 6;426(3):601-10. doi: 10.1016/j.jmb.2013.10.035. Epub 2013 Nov 2.
4
Light activation of the LOV protein vivid generates a rapidly exchanging dimer.
Biochemistry. 2008 Jul 8;47(27):7012-9. doi: 10.1021/bi8007017. Epub 2008 Jun 14.
5
Illuminating solution responses of a LOV domain protein with photocoupled small-angle X-ray scattering.
J Mol Biol. 2009 Nov 6;393(4):909-19. doi: 10.1016/j.jmb.2009.08.045. Epub 2009 Aug 25.
7
Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor.
Proteins. 2012 Feb;80(2):471-81. doi: 10.1002/prot.23213. Epub 2011 Nov 12.
8
Structure of a light-activated LOV protein dimer that regulates transcription.
Sci Signal. 2011 Aug 2;4(184):ra50. doi: 10.1126/scisignal.2001945.
9
Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
PLoS Comput Biol. 2019 Feb 19;15(2):e1006801. doi: 10.1371/journal.pcbi.1006801. eCollection 2019 Feb.
10
Functional conservation of light, oxygen, or voltage domains in light sensing.
Proc Natl Acad Sci U S A. 2003 May 13;100(10):5938-43. doi: 10.1073/pnas.1031791100. Epub 2003 Apr 28.

引用本文的文献

1
Dimeric allostery mechanism of the plant circadian clock photoreceptor ZEITLUPE.
PLoS Comput Biol. 2021 Jul 26;17(7):e1009168. doi: 10.1371/journal.pcbi.1009168. eCollection 2021 Jul.
2
Steric and Electronic Interactions at Gln154 in ZEITLUPE Induce Reorganization of the LOV Domain Dimer Interface.
Biochemistry. 2021 Jan 19;60(2):95-103. doi: 10.1021/acs.biochem.0c00819. Epub 2020 Dec 18.
3
Allosteric Regulation at the Crossroads of New Technologies: Multiscale Modeling, Networks, and Machine Learning.
Front Mol Biosci. 2020 Jul 9;7:136. doi: 10.3389/fmolb.2020.00136. eCollection 2020.
4
Directed kinetic transition network model.
J Chem Phys. 2019 Oct 14;151(14):144112. doi: 10.1063/1.5110896.
5
Allosteric mechanism of the circadian protein Vivid resolved through Markov state model and machine learning analysis.
PLoS Comput Biol. 2019 Feb 19;15(2):e1006801. doi: 10.1371/journal.pcbi.1006801. eCollection 2019 Feb.
6
t-Distributed Stochastic Neighbor Embedding Method with the Least Information Loss for Macromolecular Simulations.
J Chem Theory Comput. 2018 Nov 13;14(11):5499-5510. doi: 10.1021/acs.jctc.8b00652. Epub 2018 Oct 9.
7
Blue-Light Receptors for Optogenetics.
Chem Rev. 2018 Nov 14;118(21):10659-10709. doi: 10.1021/acs.chemrev.8b00163. Epub 2018 Jul 9.

本文引用的文献

1
Rigid Residue Scan Simulations Systematically Reveal Residue Entropic Roles in Protein Allostery.
PLoS Comput Biol. 2016 Apr 26;12(4):e1004893. doi: 10.1371/journal.pcbi.1004893. eCollection 2016 Apr.
3
LOV-based optogenetic devices: light-driven modules to impart photoregulated control of cellular signaling.
Front Mol Biosci. 2015 May 12;2:18. doi: 10.3389/fmolb.2015.00018. eCollection 2015.
4
Identifying key residues for protein allostery through rigid residue scan.
J Phys Chem A. 2015 Mar 5;119(9):1689-700. doi: 10.1021/jp5083455. Epub 2014 Dec 11.
5
All-atom empirical potential for molecular modeling and dynamics studies of proteins.
J Phys Chem B. 1998 Apr 30;102(18):3586-616. doi: 10.1021/jp973084f.
6
Light-induced differences in conformational dynamics of the circadian clock regulator VIVID.
J Mol Biol. 2014 Feb 6;426(3):601-10. doi: 10.1016/j.jmb.2013.10.035. Epub 2013 Nov 2.
7
Signaling mechanisms of LOV domains: new insights from molecular dynamics studies.
Photochem Photobiol Sci. 2013 Jul;12(7):1158-70. doi: 10.1039/c3pp25400c.
8
Maintain rigid structures in Verlet based cartesian molecular dynamics simulations.
J Chem Phys. 2012 Oct 7;137(13):134110. doi: 10.1063/1.4756796.
9
Illuminating the early signaling pathway of a fungal light-oxygen-voltage photoreceptor.
Proteins. 2012 Feb;80(2):471-81. doi: 10.1002/prot.23213. Epub 2011 Nov 12.
10
Structure of a light-activated LOV protein dimer that regulates transcription.
Sci Signal. 2011 Aug 2;4(184):ra50. doi: 10.1126/scisignal.2001945.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验