Yee Estella F, Diensthuber Ralph P, Vaidya Anand T, Borbat Peter P, Engelhard Christopher, Freed Jack H, Bittl Robert, Möglich Andreas, Crane Brian R
Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, USA.
Biophysikalische Chemie, Institut für Biologie, Humboldt-Universität zu Berlin, Berlin 10115, Germany.
Nat Commun. 2015 Dec 9;6:10079. doi: 10.1038/ncomms10079.
Light-oxygen-voltage (LOV) receptors sense blue light through the photochemical generation of a covalent adduct between a flavin-nucleotide chromophore and a strictly conserved cysteine residue. Here we show that, after cysteine removal, the circadian-clock LOV-protein Vivid still undergoes light-induced dimerization and signalling because of flavin photoreduction to the neutral semiquinone (NSQ). Similarly, photoreduction of the engineered LOV histidine kinase YF1 to the NSQ modulates activity and downstream effects on gene expression. Signal transduction in both proteins hence hinges on flavin protonation, which is common to both the cysteinyl adduct and the NSQ. This general mechanism is also conserved by natural cysteine-less, LOV-like regulators that respond to chemical or photoreduction of their flavin cofactors. As LOV proteins can react to light even when devoid of the adduct-forming cysteine, modern LOV photoreceptors may have arisen from ancestral redox-active flavoproteins. The ability to tune LOV reactivity through photoreduction may have important implications for LOV mechanism and optogenetic applications.
光氧电压(LOV)受体通过黄素核苷酸发色团与一个严格保守的半胱氨酸残基之间光化学生成共价加合物来感知蓝光。我们在此表明,去除半胱氨酸后,昼夜节律时钟LOV蛋白Vivid仍会因黄素光还原为中性半醌(NSQ)而发生光诱导二聚化和信号传导。同样,工程化的LOV组氨酸激酶YF1光还原为NSQ会调节其活性以及对基因表达的下游效应。因此,这两种蛋白质中的信号转导都取决于黄素质子化,这在半胱氨酰加合物和NSQ中都是常见的。这种普遍机制在天然无半胱氨酸的、类似LOV的调节剂中也得以保留,这些调节剂会对其黄素辅因子的化学还原或光还原作出反应。由于LOV蛋白即使在没有形成加合物的半胱氨酸时也能对光作出反应,现代LOV光感受器可能起源于祖先的氧化还原活性黄素蛋白。通过光还原调节LOV反应性的能力可能对LOV机制和光遗传学应用具有重要意义。