Lee Danbi, Park Hye Lin, Lee Sang-Won, Bhoo Seong Hee, Cho Man-Ho
Graduate School of Biotechnology and ‡Crop Biotech Institute, Kyung Hee University , Yongin 17104, Republic of Korea.
J Nat Prod. 2017 May 26;80(5):1467-1474. doi: 10.1021/acs.jnatprod.6b01164. Epub 2017 Apr 21.
Although they are less abundant in nature, methoxyflavonoids have distinct physicochemical and pharmacological properties compared to common nonmethylated flavonoids. Thus, enzymatic conversion and biotransformation using genetically engineered microorganisms of flavonoids have been attempted for the efficient production of methoxyflavonoids. Because of their regiospecificity, more than two flavonoid O-methyltransferases (FOMTs) and enzyme reactions are required to biosynthesize di(or poly)-methoxyflavonoids. For the one-step biotechnological production of bioactive di-O-methylflavonoids, we generated a multifunctional FOMT fusing a 3'-OMT (SlOMT3) and a 7-OMT (OsNOMT). The SlOMT3/OsNOMT fusion enzyme possessed both 3'- and 7-OMT activities to diverse flavonoid substrates, which were comparable to those of individual SlOMT3 and OsNOMT. The SlOMT3/OsNOMT enzyme also showed 3'- and 7-OMT activity for 7- or 3'-O-methylflavonoids, respectively, suggesting that the fusion enzyme can sequentially methylate flavonoids into di-O-methylflavonoids. The biotransformation of the flavonoids quercetin, luteolin, eriodictyol, and taxifolin using SlOMT3/OsNOMT-transformed Escherichia coli generated corresponding di-O-methylflavonoids, rhamnazin, velutin, 3',7-di-O-methyleriodictyol, and 3',7-di-O-methyltaxifolin, respectively. These results indicate that dimethoxyflavonoids may be efficiently produced from nonmethylated flavonoid precursors through a one-step biotransformation using the engineered E. coli harboring the SlOMT3/OsNOMT fusion gene.
尽管甲氧基黄酮在自然界中含量较少,但与常见的非甲基化黄酮相比,它们具有独特的物理化学和药理特性。因此,人们尝试利用基因工程微生物对黄酮进行酶促转化和生物转化,以高效生产甲氧基黄酮。由于其区域特异性,生物合成二(或多)甲氧基黄酮需要两种以上的黄酮O-甲基转移酶(FOMT)和酶反应。为了一步法生物技术生产具有生物活性的二-O-甲基黄酮,我们构建了一种融合3'-OMT(SlOMT3)和7-OMT(OsNOMT)的多功能FOMT。SlOMT3/OsNOMT融合酶对多种黄酮底物同时具有3'-和7-OMT活性,与单独的SlOMT3和OsNOMT相当。SlOMT3/OsNOMT酶对7-O-甲基黄酮或3'-O-甲基黄酮分别表现出3'-和7-OMT活性,这表明该融合酶可以将黄酮依次甲基化为二-O-甲基黄酮。利用SlOMT3/OsNOMT转化的大肠杆菌对槲皮素、木犀草素、圣草酚和紫杉叶素进行生物转化,分别生成了相应的二-O-甲基黄酮,即鼠李秦素、毛地黄黄酮、3',7-二-O-甲基圣草酚和3',7-二-O-甲基紫杉叶素。这些结果表明,通过使用携带SlOMT3/OsNOMT融合基因的工程化大肠杆菌进行一步生物转化,可以从非甲基化黄酮前体高效生产二甲氧基黄酮。