Suppr超能文献

使用先进扩散模型对头颈部鳞状细胞癌患者的肿瘤生长速率进行无创预测。

Non-invasive prediction of the tumor growth rate using advanced diffusion models in head and neck squamous cell carcinoma patients.

作者信息

Fujima Noriyuki, Sakashita Tomohiro, Homma Akihiro, Harada Taisuke, Shimizu Yukie, Tha Khin Khin, Kudo Kohsuke, Shirato Hiroki

机构信息

Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.

Department of Otolaryngology, Head and Neck Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan.

出版信息

Oncotarget. 2017 May 16;8(20):33631-33643. doi: 10.18632/oncotarget.16851.

Abstract

We assessed parameters of advanced diffusion weighted imaging (DWI) models for the prediction of the tumor growth rate in 55 head and neck squamous cell carcinoma (HNSCC) patients. The DWI acquisition used single-shot spin-echo echo-planar imaging with 12 b-values (0-2000). We calculated 14 DWI parameters using mono-exponential, bi-exponential, tri-exponential, stretched exponential and diffusion kurtosis imaging models. We directly measured the tumor growth rate from two sets of different-date imaging data. We divided the patients into a discovery group (n = 40) and validation group (n = 15) based on their MR acquisition dates. In the discovery group, we performed univariate and multivariate regression analyses to establish the multiple regression equation for the prediction of the tumor growth rate using diffusion parameters. The equation obtained with the discovery group was applied to the validation group for the confirmation of the equation's accuracy. After the univariate and multivariate regression analyses in the discovery-group patients, the estimated tumor growth rate equation was established by using the significant parameters of intermediate diffusion coefficient D2 and slow diffusion coefficient D3 obtained by the tri-exponential model. The discovery group's correlation coefficient between the estimated and directly measured tumor growth rates was 0.74. In the validation group, the correlation coefficient (r = 0.66) and intra-class correlation coefficient (0.65) between the estimated and directly measured tumor growth rates were respectively good. In conclusion, advanced DWI model parameters can be a predictor for determining HNSCC patients' tumor growth rate.

摘要

我们评估了先进扩散加权成像(DWI)模型的参数,以预测55例头颈部鳞状细胞癌(HNSCC)患者的肿瘤生长速率。DWI采集采用具有12个b值(0 - 2000)的单次激发自旋回波平面成像。我们使用单指数、双指数、三指数、拉伸指数和扩散峰度成像模型计算了14个DWI参数。我们从两组不同日期的成像数据中直接测量肿瘤生长速率。根据患者的磁共振成像采集日期,我们将患者分为发现组(n = 40)和验证组(n = 15)。在发现组中,我们进行了单变量和多变量回归分析,以建立使用扩散参数预测肿瘤生长速率的多元回归方程。将在发现组中获得的方程应用于验证组,以确认方程的准确性。在对发现组患者进行单变量和多变量回归分析后,利用三指数模型获得的中间扩散系数D2和慢扩散系数D3的显著参数建立了估计肿瘤生长速率方程。发现组中估计的和直接测量的肿瘤生长速率之间的相关系数为0.74。在验证组中,估计的和直接测量的肿瘤生长速率之间的相关系数(r = 0.66)和组内相关系数(0.65)分别良好。总之,先进的DWI模型参数可以作为确定HNSCC患者肿瘤生长速率的预测指标。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验