Whitaker Weston R, Shepherd Elizabeth Stanley, Sonnenburg Justin L
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Novome Biotechnologies, 100 Kimball Way, South San Francisco, San Francisco, CA 94080, USA.
Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA.
Cell. 2017 Apr 20;169(3):538-546.e12. doi: 10.1016/j.cell.2017.03.041.
Applying synthetic biology to engineer gut-resident microbes provides new avenues to investigate microbe-host interactions, perform diagnostics, and deliver therapeutics. Here, we describe a platform for engineering Bacteroides, the most abundant genus in the Western microbiota, which includes a process for high-throughput strain modification. We have identified a novel phage promoter and translational tuning strategy and achieved an unprecedented level of expression that enables imaging of fluorescent-protein-expressing Bacteroides stably colonizing the mouse gut. A detailed characterization of the phage promoter has provided a set of constitutive promoters that span over four logs of strength without detectable fitness burden within the gut over 14 days. These promoters function predictably over a 1,000,000-fold expression range in phylogenetically diverse Bacteroides species. With these promoters, unique fluorescent signatures were encoded to allow differentiation of six species within the gut. Fluorescent protein-based differentiation of isogenic strains revealed that priority of gut colonization determines colonic crypt occupancy.
应用合成生物学技术改造肠道常驻微生物为研究微生物与宿主的相互作用、进行诊断和提供治疗手段开辟了新途径。在此,我们描述了一个改造拟杆菌属(西方微生物群中最丰富的菌属)的平台,其中包括一个高通量菌株改造过程。我们鉴定出一种新型噬菌体启动子和翻译调控策略,并实现了前所未有的表达水平,能够对稳定定殖于小鼠肠道的表达荧光蛋白的拟杆菌进行成像。对该噬菌体启动子的详细表征提供了一组组成型启动子,其强度跨越四个数量级,在14天内肠道内未检测到适应性负担。这些启动子在系统发育上不同的拟杆菌物种中,在1000000倍的表达范围内具有可预测的功能。利用这些启动子,编码了独特的荧光特征,以便在肠道内区分六个物种。基于荧光蛋白的同基因菌株区分表明,肠道定殖的优先级决定了结肠隐窝的占据情况。