Suppr超能文献

幼虫斑马鱼小脑颗粒细胞中的感觉运动表征丰富、空间组织有序且非时间模式化。

Sensorimotor Representations in Cerebellar Granule Cells in Larval Zebrafish Are Dense, Spatially Organized, and Non-temporally Patterned.

机构信息

Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried 82152, Germany.

Max Planck Institute of Neurobiology, Sensorimotor Control Research Group, Am Klopferspitz 18, Martinsried 82152, Germany.

出版信息

Curr Biol. 2017 May 8;27(9):1288-1302. doi: 10.1016/j.cub.2017.03.029. Epub 2017 Apr 20.

Abstract

A fundamental question in neurobiology is how animals integrate external sensory information from their environment with self-generated motor and sensory signals in order to guide motor behavior and adaptation. The cerebellum is a vertebrate hindbrain region where all of these signals converge and that has been implicated in the acquisition, coordination, and calibration of motor activity. Theories of cerebellar function postulate that granule cells encode a variety of sensorimotor signals in the cerebellar input layer. These models suggest that representations should be high-dimensional, sparse, and temporally patterned. However, in vivo physiological recordings addressing these points have been limited and in particular have been unable to measure the spatiotemporal dynamics of population-wide activity. In this study, we use both calcium imaging and electrophysiology in the awake larval zebrafish to investigate how cerebellar granule cells encode three types of sensory stimuli as well as stimulus-evoked motor behaviors. We find that a large fraction of all granule cells are active in response to these stimuli, such that representations are not sparse at the population level. We find instead that most responses belong to only one of a small number of distinct activity profiles, which are temporally homogeneous and anatomically clustered. We furthermore identify granule cells that are active during swimming behaviors and others that are multimodal for sensory and motor variables. When we pharmacologically change the threshold of a stimulus-evoked behavior, we observe correlated changes in these representations. Finally, electrophysiological data show no evidence for temporal patterning in the coding of different stimulus durations.

摘要

神经生物学中的一个基本问题是动物如何将来自环境的外部感觉信息与自身产生的运动和感觉信号整合在一起,从而指导运动行为和适应。小脑是脊椎动物的后脑区域,所有这些信号都汇聚于此,并与运动活动的获取、协调和校准有关。小脑功能的理论假设颗粒细胞在小脑输入层中对各种感觉运动信号进行编码。这些模型表明,代表应该是高维的、稀疏的和时间模式化的。然而,针对这些问题的体内生理记录是有限的,特别是无法测量群体活动的时空动态。在这项研究中,我们在清醒的幼鱼中同时使用钙成像和电生理学来研究小脑颗粒细胞如何编码三种类型的感觉刺激以及刺激诱发的运动行为。我们发现,很大一部分颗粒细胞对这些刺激有反应,因此在群体水平上代表并不稀疏。相反,我们发现大多数反应只属于少数几种不同活动模式中的一种,这些模式在时间上是同质的,在解剖上是聚类的。我们还鉴定了在游泳行为中活跃的颗粒细胞和对感觉和运动变量多模态的颗粒细胞。当我们用药理学方法改变刺激诱发行为的阈值时,我们观察到这些代表的相关性变化。最后,电生理数据显示,在不同刺激持续时间的编码中没有时间模式的证据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验