Suppr超能文献

高维回归中具有高斯尺度混合先验的快速采样

Fast sampling with Gaussian scale-mixture priors in high-dimensional regression.

作者信息

Bhattacharya Anirban, Chakraborty Antik, Mallick Bani K

机构信息

Department of Statistics, Texas A&M University, College Station, Texas, 77843, USA.

出版信息

Biometrika. 2016 Dec;103(4):985-991. doi: 10.1093/biomet/asw042. Epub 2016 Oct 27.

Abstract

We propose an efficient way to sample from a class of structured multivariate Gaussian distributions. The proposed algorithm only requires matrix multiplications and linear system solutions. Its computational complexity grows linearly with the dimension, unlike existing algorithms that rely on Cholesky factorizations with cubic complexity. The algorithm is broadly applicable in settings where Gaussian scale mixture priors are used on high-dimensional parameters. Its effectiveness is illustrated through a high-dimensional regression problem with a horseshoe prior on the regression coefficients. Other potential applications are outlined.

摘要

我们提出了一种从一类结构化多元高斯分布中进行采样的有效方法。所提出的算法仅需要矩阵乘法和线性系统求解。与现有的依赖具有立方复杂度的乔列斯基分解的算法不同,其计算复杂度随维度呈线性增长。该算法广泛适用于对高维参数使用高斯尺度混合先验的情况。通过对回归系数采用马蹄形先验的高维回归问题说明了其有效性。还概述了其他潜在应用。

相似文献

2
Bayesian cumulative shrinkage for infinite factorizations.用于无限分解的贝叶斯累积收缩法。
Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.
3
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
5
Bayesian compressive sensing using laplace priors.基于拉普拉斯先验的贝叶斯压缩感知。
IEEE Trans Image Process. 2010 Jan;19(1):53-63. doi: 10.1109/TIP.2009.2032894.
7
9
Hierarchical Bayesian sparse image reconstruction with application to MRFM.用于磁共振力显微镜的分层贝叶斯稀疏图像重建
IEEE Trans Image Process. 2009 Sep;18(9):2059-70. doi: 10.1109/TIP.2009.2024067. Epub 2009 May 29.

引用本文的文献

10
Subset selection for linear mixed models.线性混合模型的子集选择。
Biometrics. 2023 Sep;79(3):1853-1867. doi: 10.1111/biom.13707. Epub 2022 Jul 25.

本文引用的文献

1
Dirichlet-Laplace priors for optimal shrinkage.用于最优收缩的狄利克雷-拉普拉斯先验
J Am Stat Assoc. 2015 Dec 1;110(512):1479-1490. doi: 10.1080/01621459.2014.960967. Epub 2014 Sep 25.
3
Sparse Bayesian infinite factor models.稀疏贝叶斯无限因子模型
Biometrika. 2011 Jun;98(2):291-306. doi: 10.1093/biomet/asr013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验