Suppr超能文献

用于无限分解的贝叶斯累积收缩法。

Bayesian cumulative shrinkage for infinite factorizations.

作者信息

Legramanti Sirio, Durante Daniele, Dunson David B

机构信息

Department of Decision Sciences, Bocconi University, Via Röntgen 1, 20136 Milan, Italy.

Department of Statistical Science, Duke University, Box 90251, Durham, North Carolina 27707, USA.

出版信息

Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.

Abstract

The dimension of the parameter space is typically unknown in a variety of models that rely on factorizations. For example, in factor analysis the number of latent factors is not known and has to be inferred from the data. Although classical shrinkage priors are useful in such contexts, increasing shrinkage priors can provide a more effective approach that progressively penalizes expansions with growing complexity. In this article we propose a novel increasing shrinkage prior, called the cumulative shrinkage process, for the parameters that control the dimension in overcomplete formulations. Our construction has broad applicability and is based on an interpretable sequence of spike-and-slab distributions which assign increasing mass to the spike as the model complexity grows. Using factor analysis as an illustrative example, we show that this formulation has theoretical and practical advantages relative to current competitors, including an improved ability to recover the model dimension. An adaptive Markov chain Monte Carlo algorithm is proposed, and the performance gains are outlined in simulations and in an application to personality data.

摘要

在各种依赖因式分解的模型中,参数空间的维度通常是未知的。例如,在因子分析中,潜在因子的数量是未知的,必须从数据中推断出来。尽管经典的收缩先验在这种情况下很有用,但递增收缩先验可以提供一种更有效的方法,随着复杂性的增加逐步惩罚扩展。在本文中,我们针对超完备公式中控制维度的参数提出了一种新颖的递增收缩先验,称为累积收缩过程。我们的构造具有广泛的适用性,它基于一系列可解释的尖峰和平板分布,随着模型复杂性的增加,这些分布将越来越多的质量分配给尖峰。以因子分析为例,我们表明这种公式相对于当前的竞争方法具有理论和实际优势,包括提高恢复模型维度的能力。我们提出了一种自适应马尔可夫链蒙特卡罗算法,并在模拟和人格数据应用中概述了性能提升。

相似文献

1
Bayesian cumulative shrinkage for infinite factorizations.用于无限分解的贝叶斯累积收缩法。
Biometrika. 2020 Sep;107(3):745-752. doi: 10.1093/biomet/asaa008. Epub 2020 May 27.

引用本文的文献

7
Bayesian Simultaneous Factorization and Prediction Using Multi-Omic Data.使用多组学数据的贝叶斯同时分解与预测
Comput Stat Data Anal. 2024 Sep;197. doi: 10.1016/j.csda.2024.107974. Epub 2024 Apr 30.
8
Subspace shrinkage in conjugate Bayesian vector autoregressions.共轭贝叶斯向量自回归中的子空间收缩
J Appl Econ (Chichester Engl). 2023 Jun-Jul;38(4):556-576. doi: 10.1002/jae.2966. Epub 2023 Mar 15.
9
Bayesian predictive modeling of multi-source multi-way data.多源多向数据的贝叶斯预测建模
Comput Stat Data Anal. 2023 Oct;186. doi: 10.1016/j.csda.2023.107783. Epub 2023 May 19.
10
Generalized infinite factorization models.广义无限分解模型。
Biometrika. 2022 Sep;109(3):817-835. doi: 10.1093/biomet/asab056. Epub 2022 Jan 19.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验