Suppr超能文献

CAGI SickKids 挑战:评估患有不明原因疾病的儿童的临床和基因组数据中得出的表型和变异预测。

CAGI SickKids challenges: Assessment of phenotype and variant predictions derived from clinical and genomic data of children with undiagnosed diseases.

机构信息

Department of Plant and Microbial Biology, University of California, Berkeley, California.

Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia.

出版信息

Hum Mutat. 2019 Sep;40(9):1373-1391. doi: 10.1002/humu.23874. Epub 2019 Sep 3.

Abstract

Whole-genome sequencing (WGS) holds great potential as a diagnostic test. However, the majority of patients currently undergoing WGS lack a molecular diagnosis, largely due to the vast number of undiscovered disease genes and our inability to assess the pathogenicity of most genomic variants. The CAGI SickKids challenges attempted to address this knowledge gap by assessing state-of-the-art methods for clinical phenotype prediction from genomes. CAGI4 and CAGI5 participants were provided with WGS data and clinical descriptions of 25 and 24 undiagnosed patients from the SickKids Genome Clinic Project, respectively. Predictors were asked to identify primary and secondary causal variants. In addition, for CAGI5, groups had to match each genome to one of three disorder categories (neurologic, ophthalmologic, and connective), and separately to each patient. The performance of matching genomes to categories was no better than random but two groups performed significantly better than chance in matching genomes to patients. Two of the ten variants proposed by two groups in CAGI4 were deemed to be diagnostic, and several proposed pathogenic variants in CAGI5 are good candidates for phenotype expansion. We discuss implications for improving in silico assessment of genomic variants and identifying new disease genes.

摘要

全基因组测序(WGS)作为一种诊断测试具有巨大的潜力。然而,目前大多数接受 WGS 的患者都没有分子诊断,这主要是由于尚未发现大量疾病基因,以及我们无法评估大多数基因组变异的致病性。CAGI SickKids 挑战赛试图通过评估从基因组预测临床表型的最先进方法来填补这一知识空白。CAGI4 和 CAGI5 的参与者分别获得了 SickKids 基因组诊所项目的 25 名和 24 名未确诊患者的 WGS 数据和临床描述。要求预测者识别主要和次要因果变异。此外,对于 CAGI5,各组必须将每个基因组与三个疾病类别之一(神经、眼科和结缔组织)匹配,并分别与每个患者匹配。将基因组与类别进行匹配的性能并不优于随机,但有两组在将基因组与患者进行匹配方面的表现明显优于随机。CAGI4 中的两组提出的十个变体中有两个被认为是诊断性的,CAGI5 中的几个提出的致病性变体是表型扩展的良好候选者。我们讨论了改进基因组变异的计算评估和识别新疾病基因的影响。

相似文献

3
CAGI4 SickKids clinical genomes challenge: A pipeline for identifying pathogenic variants.
Hum Mutat. 2017 Sep;38(9):1169-1181. doi: 10.1002/humu.23257. Epub 2017 Jun 27.
4
Are machine learning based methods suited to address complex biological problems? Lessons from CAGI-5 challenges.
Hum Mutat. 2019 Sep;40(9):1455-1462. doi: 10.1002/humu.23784. Epub 2019 Jun 18.
7
Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2019 Sep;40(9):1197-1201. doi: 10.1002/humu.23876. Epub 2019 Aug 26.
8
CAGI5: Objective performance assessments of predictions based on the Evolutionary Action equation.
Hum Mutat. 2019 Sep;40(9):1436-1454. doi: 10.1002/humu.23873. Epub 2019 Aug 7.
9
Copy-number variants in clinical genome sequencing: deployment and interpretation for rare and undiagnosed disease.
Genet Med. 2019 May;21(5):1121-1130. doi: 10.1038/s41436-018-0295-y. Epub 2018 Oct 8.
10
Assessing predictions of the impact of variants on splicing in CAGI5.
Hum Mutat. 2019 Sep;40(9):1215-1224. doi: 10.1002/humu.23869. Epub 2019 Aug 19.

引用本文的文献

2
Novel Variants of CEP152 in a Case of Compound-Heterozygous Inheritance of Epilepsy.
Glob Med Genet. 2024 Jan 16;11(1):20-24. doi: 10.1055/s-0043-1777807. eCollection 2024 Jan.
4
Genome interpretation using in silico predictors of variant impact.
Hum Genet. 2022 Oct;141(10):1549-1577. doi: 10.1007/s00439-022-02457-6. Epub 2022 Apr 30.
5
Monogenic causes of non-obstructive azoospermia: challenges, established knowledge, limitations and perspectives.
Hum Genet. 2021 Jan;140(1):135-154. doi: 10.1007/s00439-020-02112-y. Epub 2020 Jan 18.
7
Reports from the fifth edition of CAGI: The Critical Assessment of Genome Interpretation.
Hum Mutat. 2019 Sep;40(9):1197-1201. doi: 10.1002/humu.23876. Epub 2019 Aug 26.
8
CAGI5: Objective performance assessments of predictions based on the Evolutionary Action equation.
Hum Mutat. 2019 Sep;40(9):1436-1454. doi: 10.1002/humu.23873. Epub 2019 Aug 7.

本文引用的文献

1
Inferring the molecular and phenotypic impact of amino acid variants with MutPred2.
Nat Commun. 2020 Nov 20;11(1):5918. doi: 10.1038/s41467-020-19669-x.
2
PhenPath: a tool for characterizing biological functions underlying different phenotypes.
BMC Genomics. 2019 Jul 16;20(Suppl 8):548. doi: 10.1186/s12864-019-5868-x.
3
Specific phenotype semantics facilitate gene prioritization in clinical exome sequencing.
Eur J Hum Genet. 2019 Sep;27(9):1389-1397. doi: 10.1038/s41431-019-0412-7. Epub 2019 May 3.
4
A retrospective review of multiple findings in diagnostic exome sequencing: half are distinct and half are overlapping diagnoses.
Genet Med. 2019 Oct;21(10):2199-2207. doi: 10.1038/s41436-019-0477-2. Epub 2019 Mar 21.
5
Clinical whole genome sequencing as a first-tier test at a resource-limited dysmorphology clinic in Mexico.
NPJ Genom Med. 2019 Feb 14;4:5. doi: 10.1038/s41525-018-0076-1. eCollection 2019.
7
Into the Wild: GWAS Exploration of Non-coding RNAs.
Front Cardiovasc Med. 2018 Dec 17;5:181. doi: 10.3389/fcvm.2018.00181. eCollection 2018.
8
VarSome: the human genomic variant search engine.
Bioinformatics. 2019 Jun 1;35(11):1978-1980. doi: 10.1093/bioinformatics/bty897.
10
Realizing the significance of noncoding functionality in clinical genomics.
Exp Mol Med. 2018 Aug 7;50(8):1-8. doi: 10.1038/s12276-018-0087-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验