文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于纳米技术和绿色化学的药物递送系统综述:绿色纳米医学

A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

作者信息

Jahangirian Hossein, Lemraski Ensieh Ghasemian, Webster Thomas J, Rafiee-Moghaddam Roshanak, Abdollahi Yadollah

机构信息

Department of Chemical Engineering, Northeastern University, Boston, MA, USA.

Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran.

出版信息

Int J Nanomedicine. 2017 Apr 12;12:2957-2978. doi: 10.2147/IJN.S127683. eCollection 2017.


DOI:10.2147/IJN.S127683
PMID:28442906
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC5396976/
Abstract

This review discusses the impact of green and environmentally safe chemistry on the field of nanotechnology-driven drug delivery in a new field termed "green nanomedicine". Studies have shown that among many examples of green nanotechnology-driven drug delivery systems, those receiving the greatest amount of attention include nanometal particles, polymers, and biological materials. Furthermore, green nanodrug delivery systems based on environmentally safe chemical reactions or using natural biomaterials (such as plant extracts and microorganisms) are now producing innovative materials revolutionizing the field. In this review, the use of green chemistry design, synthesis, and application principles and eco-friendly synthesis techniques with low side effects are discussed. The review ends with a description of key future efforts that must ensue for this field to continue to grow.

摘要

本综述讨论了绿色环保化学在一个名为“绿色纳米医学”的新领域中对纳米技术驱动的药物递送领域的影响。研究表明,在众多绿色纳米技术驱动的药物递送系统实例中,受到最多关注的包括纳米金属颗粒、聚合物和生物材料。此外,基于环境安全化学反应或使用天然生物材料(如植物提取物和微生物)的绿色纳米药物递送系统正在生产革新该领域的创新材料。在本综述中,讨论了绿色化学设计、合成和应用原则以及副作用低的环保合成技术的使用。综述最后描述了为使该领域持续发展而必须开展的关键未来工作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/45ab84c11418/ijn-12-2957Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/696debc31dde/ijn-12-2957Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/96a0eb092199/ijn-12-2957Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/1d8863d287e7/ijn-12-2957Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/c51be4f2772c/ijn-12-2957Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/7bbf458a5365/ijn-12-2957Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/76e32a56f485/ijn-12-2957Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/8914bec747ee/ijn-12-2957Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/9108201768a3/ijn-12-2957Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/45ab84c11418/ijn-12-2957Fig9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/696debc31dde/ijn-12-2957Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/96a0eb092199/ijn-12-2957Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/1d8863d287e7/ijn-12-2957Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/c51be4f2772c/ijn-12-2957Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/7bbf458a5365/ijn-12-2957Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/76e32a56f485/ijn-12-2957Fig6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/8914bec747ee/ijn-12-2957Fig7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/9108201768a3/ijn-12-2957Fig8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8752/5396976/45ab84c11418/ijn-12-2957Fig9.jpg

相似文献

[1]
A review of drug delivery systems based on nanotechnology and green chemistry: green nanomedicine.

Int J Nanomedicine. 2017-4-12

[2]
Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern.

Nanomedicine (Lond). 2017-2

[3]
Tiny technology proves big: a challenge at engineering, medicine and pharmaceutical sciences interface.

Crit Rev Ther Drug Carrier Syst. 2014

[4]
Green Synthesized Nanomaterials as Theranostic Platforms for Cancer Treatment: Principles, Challenges and the Road Ahead.

Curr Med Chem. 2019

[5]
A review on green synthesis of silver nanoparticles and their applications.

Artif Cells Nanomed Biotechnol. 2016-11-8

[6]
An Overview of Green Synthesis and Potential Pharmaceutical Applications of Nanoparticles as Targeted Drug Delivery System in Biomedicines.

Drug Res (Stuttg). 2022-6

[7]
Smart chemistry-based nanosized drug delivery systems for systemic applications: A comprehensive review.

J Control Release. 2017-5-2

[8]
A review of using green chemistry methods for biomaterials in tissue engineering.

Int J Nanomedicine. 2018-10-4

[9]
Critical analysis of biophysicochemical parameters for qualitative improvement of phytogenic nanoparticles.

Biotechnol Prog. 2021-3

[10]
Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles.

IET Nanobiotechnol. 2011-9

引用本文的文献

[1]
Nanomaterial-based encapsulation of biochemicals for targeted sepsis therapy.

Mater Today Bio. 2025-7-4

[2]
Biological activities and phytochemical characterization of subsp. and subsp. extracts and extract-loaded nanoparticles.

Front Pharmacol. 2025-3-18

[3]
Optical coherence tomography for noninvasive monitoring of drug delivery.

Adv Drug Deliv Rev. 2025-5

[4]
Antifungal efficacy of Citrusfusion mediated silver nanoparticles in Candida species.

BMC Biotechnol. 2025-2-20

[5]
Sustainable synthesis of carbon dots via bio-waste recycling for biomedical imaging.

Smart Med. 2024-7-17

[6]
The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review.

Biotechnol Notes. 2024-6-5

[7]
Nanomaterial-mediated host directed therapy of tuberculosis by manipulating macrophage autophagy.

J Nanobiotechnology. 2024-10-8

[8]
Understanding the adsorption performance of hetero-nanocages (C-BN, C-AlN, and BN-AlN) towards hydroxyurea anticancer drug: a comprehensive study using DFT.

Nanoscale Adv. 2024-10-3

[9]
A Descriptive Review on the Potential Use of Diatom Biosilica as a Powerful Functional Biomaterial: A Natural Drug Delivery System.

Pharmaceutics. 2024-9-5

[10]
Lymphatic endothelial cell-targeting lipid nanoparticles delivering VEGFC mRNA improve lymphatic function after injury.

bioRxiv. 2024-7-31

本文引用的文献

[1]
ATP triggered drug release and DNA co-delivery systems based on ATP responsive aptamers and polyethylenimine complexes.

J Mater Chem B. 2016-6-7

[2]
Ginsenoside nanoparticle: a new green drug delivery system.

J Mater Chem B. 2016-1-21

[3]
The preparation and drug delivery of a graphene-carbon nanotube-FeO nanoparticle hybrid.

J Mater Chem B. 2013-5-28

[4]
Biocompatible nanogel derived from functionalized dextrin for targeted delivery of doxorubicin hydrochloride to MG 63 cancer cells.

Carbohydr Polym. 2017-4-27

[5]
Highly lipophilic pluronics-conjugated polyamidoamine dendrimer nanocarriers as potential delivery system for hydrophobic drugs.

Mater Sci Eng C Mater Biol Appl. 2017-1-1

[6]
Sonochemical and sustainable synthesis of graphene-gold (G-Au) nanocomposites for enzymeless and selective electrochemical detection of nitric oxide.

Biosens Bioelectron. 2016-9-1

[7]
Enhanced efficacy of clindamycin hydrochloride encapsulated in PLA/PLGA based nanoparticle system for oral delivery.

IET Nanobiotechnol. 2016-8

[8]
Lentinan-Modified Carbon Nanotubes as an Antigen Delivery System Modulate Immune Response in Vitro and in Vivo.

ACS Appl Mater Interfaces. 2016-7-22

[9]
Therapeutic role of a synthesized calcium phosphate nanocomposite material on hepatocarcinogenesis in rats.

Biochem Cell Biol. 2016-6

[10]
Green design "bioinspired disassembly-reassembly strategy" applied for improved tumor-targeted anticancer drug delivery.

J Control Release. 2016-5-27

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索