School of Physics and Astronomy and the Photon Science Institute, The University of Manchester, Manchester M13 9PL, UK.
Nanoscale. 2017 May 11;9(18):6056-6067. doi: 10.1039/c7nr00672a.
Achieving control of the surface chemistry of colloidal quantum dots (CQDs) is essential to fully exploit their properties in solar cells, but direct measurement of the chemistry and electronic structure in the outermost atomic layers is challenging. Here we probe the surface oxidation and passivation of cation-exchanged PbS/CdS core/shell CQDs with sub nm-scale precision using synchrotron-radiation-excited depth-profiling photoemission. We investigate the surface composition of the topmost 1-2.5 nm of the CQDs as a function of depth, for CQDs of varying CdS shell thickness, and examine how the surface changes after prolonged air exposure. We demonstrate that the Cd is localized at the surface of the CQDs. The surface-localized products of oxidation are identified, and the extent of oxidation quantified. We show that oxidised sulfur species are progressively eliminated as Cd replaces Pb at the surface. A sub-monolayer surface 'decoration' of Cd is found to be effective in passivating the CQDs. We show that the measured energy-level alignments at PbS/CdS colloidal quantum dot surfaces differ from those expected on the basis of bulk band offsets, and are strongly affected by the oxidation products. We develop a model for the passivating action of Cd. The optimum shell thickness (of around 0.1 nm, previously found to give maximised power conversion efficiency in PbS/CdS solar cells) is found to correspond to a trade-off between the rate of oxidation and the introduction of a surface barrier to charge transport.
实现胶体量子点 (CQDs) 表面化学的控制对于充分发挥其在太阳能电池中的性能至关重要,但直接测量最外层原子层的化学和电子结构具有挑战性。在这里,我们使用同步辐射激发的深度剖析光电子能谱,以亚纳米级精度探测阳离子交换的 PbS/CdS 核/壳 CQD 的表面氧化和钝化。我们研究了不同 CdS 壳层厚度的 CQD 中最上面 1-2.5nm 的表面组成作为深度的函数,并检查了 CQDs 在长时间暴露于空气中后表面的变化。我们证明 Cd 定位于 CQD 的表面。鉴定了表面氧化的局部产物,并量化了氧化的程度。我们表明,随着 Cd 取代 Pb 表面,氧化的硫物种逐渐被消除。在 Cd 表面发现亚单层的表面“修饰”可以有效地钝化 CQD。我们表明,在 PbS/CdS 胶体量子点表面测量的能级对准与基于体带隙的预期值不同,并且强烈受氧化产物的影响。我们开发了一种用于 Cd 钝化作用的模型。发现最佳壳层厚度(约 0.1nm,以前在 PbS/CdS 太阳能电池中发现可最大程度提高功率转换效率)对应于氧化速率和引入电荷传输表面势垒之间的权衡。