Choi Hyekyoung, Song Jung Hoon, Jang Jihoon, Mai Xuan Dung, Kim Sungwoo, Jeong Sohee
Nano-Mechanical Systems Research Division, Korea Institute of Machinery and Materials (KIMM), Daejeon, 305-343, Republic of Korea.
Nanoscale. 2015 Nov 7;7(41):17473-81. doi: 10.1039/c5nr03309h.
We fabricated heterojunction solar cells with PbSe/PbS core shell quantum dots and studied the precisely controlled PbS shell thickness dependency in terms of optical properties, electronic structure, and solar cell performances. When the PbS shell thickness increases, the short circuit current density (JSC) increases from 6.4 to 11.8 mA cm(-2) and the fill factor (FF) enhances from 30 to 49% while the open circuit voltage (VOC) remains unchanged at 0.46 V even with the decreased effective band gap. We found that the Fermi level and the valence band maximum level remain unchanged in both the PbSe core and PbSe/PbS core/shell with a less than 1 nm thick PbS shell as probed via ultraviolet photoelectron spectroscopy (UPS). The PbS shell reduces their surface trap density as confirmed by relative quantum yield measurements. Consequently, PbS shell formation on the PbSe core mitigates the trade-off relationship between the open circuit voltage and the short circuit current density. Finally, under the optimized conditions, the PbSe core with a 0.9 nm thick shell yielded a power conversion efficiency of 6.5% under AM 1.5.
我们制备了具有PbSe/PbS核壳量子点的异质结太阳能电池,并从光学性质、电子结构和太阳能电池性能方面研究了精确控制的PbS壳层厚度依赖性。当PbS壳层厚度增加时,短路电流密度(JSC)从6.4增加到11.8 mA cm(-2),填充因子(FF)从30%提高到49%,而开路电压(VOC)即使在有效带隙减小的情况下仍保持在0.46 V不变。我们发现,通过紫外光电子能谱(UPS)探测,在PbS壳层厚度小于1 nm的PbSe核以及PbSe/PbS核/壳中,费米能级和价带最大值能级均保持不变。通过相对量子产率测量证实,PbS壳层降低了它们的表面陷阱密度。因此,在PbSe核上形成PbS壳层减轻了开路电压和短路电流密度之间的权衡关系。最后,在优化条件下,具有0.9 nm厚壳层的PbSe核在AM 1.5光照下的功率转换效率为6.5%。