Suppr超能文献

平流环境中多种物种的竞争

Competition of Multiple Species in Advective Environments.

作者信息

Vasilyeva Olga

机构信息

Memorial University of Newfoundland, Grenfell Campus, Corner Brook, NL, Canada.

出版信息

Bull Math Biol. 2017 Jun;79(6):1274-1294. doi: 10.1007/s11538-017-0285-2. Epub 2017 Apr 25.

Abstract

We study the effect of changes in flow speed on competition of an arbitrary number of species living in advective environments, such as streams and rivers. We begin with a spatial Lotka-Volterra model which is described by n reaction-diffusion-advection equations with Danckwerts boundary conditions. Using the dominant eigenvalue [Formula: see text] of the diffusion-advection operator subject to boundary conditions, we reduce the model to a system of ordinary differential equations. We impose a "transitive arrangement" of the competitors in terms of their interspecific coefficients and growth rates, which means that in the absence of advection, we have the following situation: for all [Formula: see text], species i out-competes species j, while species j has higher intrinsic growth rate than species i. Changing advection speed in the original spatial model corresponds to changing the value of [Formula: see text] in the spatially implicit model. Considering the cases of the odd and even n separately, we obtain explicit intervals of the values of [Formula: see text] that allow all n species to be present in the habitat (coexistence interval). Stability of this equilibrium is shown for [Formula: see text].

摘要

我们研究流速变化对生活在平流环境(如溪流和河流)中任意数量物种竞争的影响。我们从一个空间Lotka-Volterra模型开始,该模型由具有Danckwerts边界条件的n个反应扩散-对流方程描述。利用受边界条件约束的扩散-对流算子的主导特征值[公式:见原文],我们将模型简化为一个常微分方程组。我们根据种间系数和增长率对竞争者进行“传递排列”,这意味着在没有平流的情况下,我们有以下情况:对于所有[公式:见原文],物种i胜过物种j,而物种j的内在增长率高于物种i。原始空间模型中平流速度的变化对应于空间隐式模型中[公式:见原文]值的变化。分别考虑n为奇数和偶数的情况,我们得到了[公式:见原文]值的明确区间,该区间允许所有n个物种存在于栖息地(共存区间)。对于[公式:见原文],显示了这种平衡的稳定性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验