Cavaliere Matteo, Feng Song, Soyer Orkun S, Jiménez José I
School of Informatics, BBSRC/EPSRC/MRC Synthetic Biology Research Centre, University of Edinburgh, Edinburgh, EH8 9AB, UK.
Center for Nonlinear Studies, Theoretical Division (T-6), Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
Environ Microbiol. 2017 Aug;19(8):2949-2963. doi: 10.1111/1462-2920.13767. Epub 2017 May 29.
Microbial communities are increasingly utilized in biotechnology. Efficiency and productivity in many of these applications depends on the presence of cooperative interactions between members of the community. Two key processes underlying these interactions are the production of public goods and metabolic cross-feeding, which can be understood in the general framework of ecological and evolutionary (eco-evo) dynamics. In this review, we illustrate the relevance of cooperative interactions in microbial biotechnological processes, discuss their mechanistic origins and analyse their evolutionary resilience. Cooperative behaviours can be damaged by the emergence of 'cheating' cells that benefit from the cooperative interactions but do not contribute to them. Despite this, cooperative interactions can be stabilized by spatial segregation, by the presence of feedbacks between the evolutionary dynamics and the ecology of the community, by the role of regulatory systems coupled to the environmental conditions and by the action of horizontal gene transfer. Cooperative interactions enrich microbial communities with a higher degree of robustness against environmental stress and can facilitate the evolution of more complex traits. Therefore, the evolutionary resilience of microbial communities and their ability to constraint detrimental mutants should be considered to design robust biotechnological applications.
微生物群落越来越多地应用于生物技术领域。在许多这类应用中,效率和生产力取决于群落成员之间合作互动的存在。这些互动背后的两个关键过程是公共物品的产生和代谢交叉喂养,这可以在生态和进化(生态 - 进化)动力学的一般框架中得到理解。在这篇综述中,我们阐述了合作互动在微生物生物技术过程中的相关性,讨论了它们的机制起源,并分析了它们的进化弹性。合作行为可能会因“作弊”细胞的出现而受到损害,这些“作弊”细胞从合作互动中获益却不为此做出贡献。尽管如此,合作互动可以通过空间隔离、进化动力学与群落生态之间反馈的存在、与环境条件相关的调节系统的作用以及水平基因转移的作用而得以稳定。合作互动使微生物群落对环境压力具有更高的稳健性,并能促进更复杂性状的进化。因此,在设计稳健的生物技术应用时,应考虑微生物群落的进化弹性及其抑制有害突变体的能力。