Sim Sheina B, Geib Scott M
United States Department of Agriculture, Agricultural Research Service Daniel K. Inouye United States Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Research Unit, Hilo, Hawaii 96720.
United States Department of Agriculture, Agricultural Research Service Daniel K. Inouye United States Pacific Basin Agricultural Research Center, Tropical Crop and Commodity Research Unit, Hilo, Hawaii 96720
G3 (Bethesda). 2017 Jun 7;7(6):1927-1940. doi: 10.1534/g3.117.040170.
Genetic sexing strains (GSS) used in sterile insect technique (SIT) programs are textbook examples of how classical Mendelian genetics can be directly implemented in the management of agricultural insect pests. Although the foundation of traditionally developed GSS are single locus, autosomal recessive traits, their genetic basis are largely unknown. With the advent of modern genomic techniques, the genetic basis of sexing traits in GSS can now be further investigated. This study is the first of its kind to integrate traditional genetic techniques with emerging genomics to characterize a GSS using the tephritid fruit fly pest as a model. These techniques include whole-genome sequencing, the development of a mapping population and linkage map, and quantitative trait analysis. The experiment designed to map the genetic sexing trait in , (), also enabled the generation of a chromosome-scale genome assembly by integrating the linkage map with the assembly. Quantitative trait loci analysis revealed SNP loci near position 42 MB on chromosome 3 to be tightly linked to Gene annotation and synteny analysis show a near perfect relationship between chromosomes in and Muller elements A-E in This chromosome-scale genome assembly is complete, has high contiguity, was generated using a minimal input DNA, and will be used to further characterize the genetic mechanisms underlying Knowledge of the genetic basis of genetic sexing traits can be used to improve SIT in this species and expand it to other economically important Diptera.
不育昆虫技术(SIT)项目中使用的遗传性别鉴定品系(GSS)是经典孟德尔遗传学如何直接应用于农业害虫治理的典型例子。尽管传统开发的GSS的基础是单基因座常染色体隐性性状,但其遗传基础在很大程度上尚不清楚。随着现代基因组技术的出现,现在可以进一步研究GSS中性别鉴定性状的遗传基础。本研究首次将传统遗传技术与新兴基因组学相结合,以实蝇科果蝇害虫为模型对一个GSS进行特征描述。这些技术包括全基因组测序、构建作图群体和连锁图谱以及数量性状分析。旨在定位地中海实蝇(Ceratitis capitata)遗传性别鉴定性状的实验,还通过将连锁图谱与基因组组装相结合,生成了一个染色体水平的基因组组装。数量性状位点分析显示,3号染色体上42兆碱基位置附近的单核苷酸多态性位点与性别鉴定性状紧密连锁。基因注释和共线性分析表明,地中海实蝇的染色体与黑腹果蝇(Drosophila melanogaster)的穆勒元素A - E之间存在近乎完美的对应关系。这个染色体水平的基因组组装是完整的,具有高连续性,使用极少的输入DNA生成,将用于进一步描述地中海实蝇性别鉴定性状潜在的遗传机制。了解遗传性别鉴定性状的遗传基础可用于改进该物种的不育昆虫技术,并将其扩展到其他具有经济重要性的双翅目昆虫。