Suppr超能文献

利用CRISPR/Cas9技术在秀丽隐杆线虫中进行靶向染色体易位和必需基因敲除

Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans.

作者信息

Chen Xiangyang, Li Mu, Feng Xuezhu, Guang Shouhong

机构信息

School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China.

School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, People's Republic of China

出版信息

Genetics. 2015 Dec;201(4):1295-306. doi: 10.1534/genetics.115.181883. Epub 2015 Oct 19.

Abstract

Many genes play essential roles in development and fertility; their disruption leads to growth arrest or sterility. Genetic balancers have been widely used to study essential genes in many organisms. However, it is technically challenging and laborious to generate and maintain the loss-of-function mutations of essential genes. The CRISPR/Cas9 technology has been successfully applied for gene editing and chromosome engineering. Here, we have developed a method to induce chromosomal translocations and produce genetic balancers using the CRISPR/Cas9 technology and have applied this approach to edit essential genes in Caenorhabditis elegans. The co-injection of dual small guide RNA targeting genes on different chromosomes resulted in reciprocal translocation between nonhomologous chromosomes. These animals with chromosomal translocations were subsequently crossed with animals that contain normal sets of chromosomes. The F1 progeny were subjected to a second round of Cas9-mediated gene editing. Through this method, we successfully produced nematode strains with specified chromosomal translocations and generated a number of loss-of-function alleles of two essential genes (csr-1 and mes-6). Therefore, our method provides an easy and efficient approach to generate and maintain loss-of-function alleles of essential genes with detailed genetic background information.

摘要

许多基因在发育和生育过程中发挥着至关重要的作用;它们的破坏会导致生长停滞或不育。遗传平衡器已被广泛用于研究许多生物体中的必需基因。然而,产生和维持必需基因的功能丧失突变在技术上具有挑战性且费力。CRISPR/Cas9技术已成功应用于基因编辑和染色体工程。在此,我们开发了一种利用CRISPR/Cas9技术诱导染色体易位并产生遗传平衡器的方法,并将此方法应用于秀丽隐杆线虫中必需基因的编辑。共注射靶向不同染色体上基因的双小向导RNA导致非同源染色体之间的相互易位。随后将这些具有染色体易位的动物与含有正常染色体组的动物杂交。F1后代接受第二轮Cas9介导的基因编辑。通过这种方法,我们成功地产生了具有特定染色体易位的线虫品系,并产生了两个必需基因(csr-1和mes-6)的许多功能丧失等位基因。因此,我们的方法提供了一种简单有效的方法来产生和维持具有详细遗传背景信息的必需基因的功能丧失等位基因。

相似文献

1
Targeted Chromosomal Translocations and Essential Gene Knockout Using CRISPR/Cas9 Technology in Caenorhabditis elegans.
Genetics. 2015 Dec;201(4):1295-306. doi: 10.1534/genetics.115.181883. Epub 2015 Oct 19.
2
An Aneuploidy-Free and Structurally Defined Balancer Chromosome Toolkit for Caenorhabditis elegans.
Cell Rep. 2018 Jan 2;22(1):232-241. doi: 10.1016/j.celrep.2017.12.024.
3
Targeted Chromosomal Rearrangements via Combinatorial Use of CRISPR/Cas9 and Cre/ Technologies in .
G3 (Bethesda). 2018 Jul 31;8(8):2697-2707. doi: 10.1534/g3.118.200473.
4
Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins.
Genetics. 2013 Nov;195(3):1177-80. doi: 10.1534/genetics.113.155853. Epub 2013 Aug 26.
6
Targeted heritable mutation and gene conversion by Cas9-CRISPR in Caenorhabditis elegans.
Genetics. 2013 Nov;195(3):1173-6. doi: 10.1534/genetics.113.155754. Epub 2013 Aug 26.
7
CRISPR-Cas9-Guided Genome Engineering in Caenorhabditis elegans.
Curr Protoc Mol Biol. 2019 Dec;129(1):e106. doi: 10.1002/cpmb.106.
9
Highly Efficient, Rapid and Co-CRISPR-Independent Genome Editing in .
G3 (Bethesda). 2017 Nov 6;7(11):3693-3698. doi: 10.1534/g3.117.300216.
10
Efficient genome editing in Caenorhabditis elegans by CRISPR-targeted homologous recombination.
Nucleic Acids Res. 2013 Nov;41(20):e193. doi: 10.1093/nar/gkt805. Epub 2013 Sep 5.

引用本文的文献

1
CRISPR/Cas9 as a Mutagenic Factor.
Int J Mol Sci. 2024 Jan 9;25(2):823. doi: 10.3390/ijms25020823.
2
CRISPR-mediated genome editing allows for efficient on demand creation of >200 kb deficiencies with precise boundaries.
MicroPubl Biol. 2023 Oct 27;2023. doi: 10.17912/micropub.biology.000949. eCollection 2023.
3
A Decade of CRISPR-Cas Gnome Editing in .
Int J Mol Sci. 2022 Dec 14;23(24):15863. doi: 10.3390/ijms232415863.
4
Speciation and adaptation research meets genome editing.
Philos Trans R Soc Lond B Biol Sci. 2022 Jul 18;377(1855):20200516. doi: 10.1098/rstb.2020.0516. Epub 2022 May 30.
7
Peel-1 negative selection promotes screening-free CRISPR-Cas9 genome editing in Caenorhabditis elegans.
PLoS One. 2020 Sep 22;15(9):e0238950. doi: 10.1371/journal.pone.0238950. eCollection 2020.
8
In vivo CRISPR screening for phenotypic targets of the family in .
Genes Dev. 2020 Sep 1;34(17-18):1227-1238. doi: 10.1101/gad.339333.120. Epub 2020 Aug 20.
9
Aspects of Gene Therapy Products Using Current Genome-Editing Technology in Japan.
Hum Gene Ther. 2020 Oct;31(19-20):1043-1053. doi: 10.1089/hum.2020.156. Epub 2020 Sep 17.
10
CRISPR/Cascade 9-Mediated Genome Editing-Challenges and Opportunities.
Front Genet. 2018 Jul 5;9:240. doi: 10.3389/fgene.2018.00240. eCollection 2018.

本文引用的文献

2
Recurrent BCAM-AKT2 fusion gene leads to a constitutively activated AKT2 fusion kinase in high-grade serous ovarian carcinoma.
Proc Natl Acad Sci U S A. 2015 Mar 17;112(11):E1272-7. doi: 10.1073/pnas.1501735112. Epub 2015 Mar 2.
3
Dramatic enhancement of genome editing by CRISPR/Cas9 through improved guide RNA design.
Genetics. 2015 Apr;199(4):959-71. doi: 10.1534/genetics.115.175166. Epub 2015 Feb 18.
6
Scalable and versatile genome editing using linear DNAs with microhomology to Cas9 Sites in Caenorhabditis elegans.
Genetics. 2014 Dec;198(4):1347-56. doi: 10.1534/genetics.114.170423. Epub 2014 Sep 23.
7
Chromosomal translocations in human cells are generated by canonical nonhomologous end-joining.
Mol Cell. 2014 Sep 18;55(6):829-842. doi: 10.1016/j.molcel.2014.08.002. Epub 2014 Sep 4.
8
Efficient marker-free recovery of custom genetic modifications with CRISPR/Cas9 in Caenorhabditis elegans.
Genetics. 2014 Nov;198(3):837-46. doi: 10.1534/genetics.114.169730. Epub 2014 Aug 26.
9
Development and applications of CRISPR-Cas9 for genome engineering.
Cell. 2014 Jun 5;157(6):1262-1278. doi: 10.1016/j.cell.2014.05.010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验