Chair of Zoology, School of Life Sciences Weihenstephan, Research Department Molecular Life Sciences, Technical University Munich, Freising 85354, Germany
Auditory Neurophysiology Group, Department of Chemosensation, Rheinisch-Westfaelische Technische Hochschule Aachen University, Aachen 52074, Germany.
J Neurosci. 2022 Mar 30;42(13):2614-2630. doi: 10.1523/JNEUROSCI.1695-21.2022. Epub 2022 Feb 8.
Multimodal integration facilitates object recognition and response to sensory cues. This depends on spatiotemporal coincidence of sensory information, recruitment of NMDA-type glutamate receptors and inhibitory feedback. Shepherd's crook neurons (SCNs) in the avian optic tectum (TeO) are an ideal model for studying cellular mechanism of multimodal integration. They receive different sensory modalities through spatially segregated dendrites, are important for stimulus selection and have an axon-carrying dendrite (AcD). We performed whole-cell patch-clamp experiments in chicken midbrain slices of both sexes. We emulated visual and auditory input by stimulating presynaptic afferents electrically. Simultaneous stimulation enhanced responses inversely depending on stimulation amplitude demonstrating the principle of inverse effectiveness. Contribution of NMDA-type glutamate receptors prolonged postsynaptic events for visual inputs only, causing a strong modality-specific difference in synaptic efficacy. We designed a multicompartment model to study the effect of morphological and physiological parameters on multimodal integration by varying the distance between soma and axonal origin and the amount of NMDA receptor (NMDAR) contribution. These parameters changed the preference of the model for one input channel and adjusted the range of input rates at which multimodal enhancement occurred on naturalistic stimulation. Thus, the unique morphology and synaptic features of SCNs shape the integration of input at different dendrites and generates an enhanced multimodal response. Multimodal integration improves perception and responses to objects. The underlying cellular mechanism depends on a balance between excitation and inhibition, and NMDA-type glutamate receptors that are involved in the multiplicative nature of enhancement following the principle of inverse effectiveness. Based on a detailed analysis of an identified multimodal cell type in the vertebrate midbrain, we studied the influence of cellular morphology and unimodal synaptic properties on multimodal integration. We can show that the combination of cellular morphology and modality-specific synaptic properties including NMDA receptor (NMDAR) contribution is optimal for nonlinear, multimodal enhancement and determines the dynamic response range of the integrating neuron. Our findings mechanistically explain how synaptic properties and cellular morphology of a midbrain neuron contribute to multimodal enhancement.
多模态整合有助于对感觉线索进行物体识别和响应。这取决于感觉信息的时空巧合、N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体的募集和抑制性反馈。禽类视顶盖(TeO)中的牧羊人钩状神经元(SCN)是研究多模态整合细胞机制的理想模型。它们通过空间分离的树突接收不同的感觉模态,对于刺激选择很重要,并且具有携带轴突的树突(AcD)。我们在雄性和雌性鸡的中脑切片上进行了全细胞膜片钳实验。我们通过电刺激突触前传入来模拟视觉和听觉输入。同时刺激以与刺激幅度成反比的方式增强了反应,证明了逆效性原理。NMDA 型谷氨酸受体的贡献仅延长了视觉输入的突触后事件,导致突触效能具有强烈的模态特异性差异。我们设计了一个多腔室模型,通过改变体和轴突起源之间的距离以及 NMDA 受体(NMDAR)贡献的数量来研究形态和生理参数对多模态整合的影响。这些参数改变了模型对一个输入通道的偏好,并调整了在自然刺激下发生多模态增强的输入率范围。因此,SCN 的独特形态和突触特征塑造了不同树突的输入整合,并产生了增强的多模态响应。多模态整合提高了对物体的感知和响应。其潜在的细胞机制取决于兴奋和抑制之间的平衡,以及参与逆效性原理的增强的乘法性质的 NMDA 型谷氨酸受体。基于对脊椎动物中脑中已识别的多模态细胞类型的详细分析,我们研究了细胞形态和单模态突触特性对多模态整合的影响。我们可以证明,细胞形态和包括 NMDA 受体(NMDAR)贡献在内的模态特异性突触特性的组合是非线性、多模态增强的最佳组合,并确定了整合神经元的动态响应范围。我们的研究结果从机制上解释了中脑神经元的突触特性和细胞形态如何有助于多模态增强。