Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States.
J Am Chem Soc. 2016 May 11;138(18):6049-60. doi: 10.1021/jacs.6b02714. Epub 2016 May 2.
This report describes a combined experimental and computational investigation of the mechanism of C(sp(3))-N bond-forming reductive elimination from sulfonamide-ligated Pd(IV) complexes. After an initial experimental assessment of reactivity, we used ZStruct, a computational combinatorial reaction finding method, to analyze a large number of multistep mechanisms for this process. This study reveals two facile isomerization pathways connecting the experimentally observed Pd(IV) isomers, along with two competing SN2 pathways for C(sp(3))-N coupling. One of these pathways involves an unanticipated oxygen-nitrogen exchange of the sulfonamide ligand prior to an inner-sphere SN2-type reductive elimination. The calculated ΔG(⧧) values for isomerization and reductive elimination with a series of sulfonamide derivatives are in good agreement with experimental data. Furthermore, the simulations predict relative reaction rates with different sulfonamides, which is successful only after considering competition between the proposed operating mechanisms. Overall, this work shows that the combination of experimental studies and new computational tools can provide fundamental mechanistic insights into complex organometallic reaction pathways.
本报告描述了磺酰胺配体钯(IV)配合物中 C(sp(3))-N 键形成还原消除反应机理的实验和计算综合研究。在对反应性进行初步实验评估后,我们使用 ZStruct(一种计算组合反应发现方法)分析了大量多步反应机理。这项研究揭示了两种连接实验观察到的钯(IV)异构体的简便异构化途径,以及两种 C(sp(3))-N 偶联的竞争 SN2 途径。其中一条途径涉及磺酰胺配体在进行内球 SN2 型还原消除之前发生意想不到的氧-氮交换。一系列磺酰胺衍生物的异构化和还原消除的计算 ΔG(⧧) 值与实验数据吻合良好。此外,模拟预测了不同磺酰胺的相对反应速率,只有在考虑到所提出的作用机制之间的竞争后,这一预测才是成功的。总的来说,这项工作表明,实验研究和新的计算工具的结合可以为复杂的有机金属反应途径提供基本的机理见解。