Suppr超能文献

评估和减轻 MRI 引导自适应放疗中变形图像配准的不确定性。

Evaluation and mitigation of deformable image registration uncertainties for MRI-guided adaptive radiotherapy.

机构信息

Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.

出版信息

J Appl Clin Med Phys. 2024 Jun;25(6):e14358. doi: 10.1002/acm2.14358. Epub 2024 Apr 18.

Abstract

PURPOSE

We evaluate the performance of a deformable image registration (DIR) software package in registering abdominal magnetic resonance images (MRIs) and then develop a mechanical modeling method to mitigate detected DIR uncertainties.

MATERIALS AND METHODS

Three evaluation metrics, namely mean displacement to agreement (MDA), DICE similarity coefficient (DSC), and standard deviation of Jacobian determinants (STD-JD), are used to assess the multi-modality (MM), contour-consistency (CC), and image-intensity (II)-based DIR algorithms in the MIM software package, as well as an in-house developed, contour matching-based finite element method (CM-FEM). Furthermore, we develop a hybrid FEM registration technique to modify the displacement vector field of each MIM registration. The MIM and FEM registrations were evaluated on MRIs obtained from 10 abdominal cancer patients. One-tailed Wilcoxon-Mann-Whitney (WMW) tests were conducted to compare the MIM registrations with their FEM modifications.

RESULTS

For the registrations performed with the MIM-CC, MIM-MM, MIM-II, and CM-FEM algorithms, their average MDAs are 0.62 ± 0.27, 2.39 ± 1.30, 3.07 ± 2.42, 1.04 ± 0.72 mm, and average DSCs are 0.94 ± 0.03, 0.80 ± 0.12, 0.77 ± 0.15, 0.90 ± 0.11, respectively. The p-values of the WMW tests between the MIM registrations and their FEM modifications are less than 0.0084 for STD-JDs and greater than 0.87 for MDA and DSC.

CONCLUSIONS

Among the three MIM DIR algorithms, MIM-CC shows the smallest errors in terms of MDA and DSC but exhibits significant Jacobian uncertainties in the interior regions of abdominal organs. The hybrid FEM technique effectively mitigates the Jacobian uncertainties in these regions.

摘要

目的

我们评估了一款形变图像配准(DIR)软件包在配准腹部磁共振成像(MRI)方面的性能,然后开发了一种机械建模方法来减轻检测到的 DIR 不确定性。

材料与方法

我们使用了三个评估指标,即平均位移一致性(MDA)、DICE 相似系数(DSC)和雅可比行列式标准差(STD-JD),来评估 MIM 软件包中的多模态(MM)、轮廓一致性(CC)和基于图像强度(II)的 DIR 算法,以及我们自主开发的基于轮廓匹配的有限元方法(CM-FEM)。此外,我们开发了一种混合有限元注册技术来修改每个 MIM 注册的位移矢量场。在 10 名腹部癌症患者的 MRI 上评估了 MIM 和 FEM 注册。采用单尾 Wilcoxon-Mann-Whitney(WMW)检验比较 MIM 注册与其 FEM 修正之间的差异。

结果

对于 MIM-CC、MIM-MM、MIM-II 和 CM-FEM 算法进行的配准,它们的平均 MDA 分别为 0.62±0.27、2.39±1.30、3.07±2.42、1.04±0.72mm,平均 DSC 分别为 0.94±0.03、0.80±0.12、0.77±0.15、0.90±0.11。WMW 检验中,MIM 注册与其 FEM 修正之间的 p 值在 STD-JD 小于 0.0084,而在 MDA 和 DSC 大于 0.87。

结论

在这三种 MIM DIR 算法中,MIM-CC 在 MDA 和 DSC 方面的误差最小,但在腹部器官内部区域表现出显著的雅可比不确定性。混合有限元技术有效地减轻了这些区域的雅可比不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f569/11163488/dad0ee979192/ACM2-25-e14358-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验