State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, PR China.
State Key Laboratory of Chemical Resource Engineering, School of Science, Beijing University of Chemical Technology, Beijing 100029, PR China; Institute of Chemical Sciences, Gomal University, D. I. Khan, KP, Pakistan.
J Photochem Photobiol B. 2017 May;170:241-246. doi: 10.1016/j.jphotobiol.2017.04.020. Epub 2017 Apr 19.
A green approach to fabricate nanoparticles has been evolved as a revolutionary discipline. Eco-compatible reaction set ups, use of non-toxic materials and production of highly active biological and photocatalytic products are few benefits of this greener approach. Here, we introduce a green method to synthesize Fe oxide NPs using Punica granatum peel extract. The formation of Fe oxide NPs was optimized using different concentrations of peel extract (20mL, 40mL and 60mL) to achieve small size and better morphology. The results indicate that the FeNPs, obtained using 40mL concentration of peel extract possess the smallest size. The morphology, size and crystallinity of NPs was confirmed by implementing various techniques i.e. UV-Vis spectroscopy, X-ray diffraction, Scanning Electron Microscopy and Electron Diffraction Spectroscopy. The bio-chemicals responsible for reduction and stabilization of FeNPs were confirmed by FT-IR analysis. The biogenic FeNPs were tested for their size dependent antibacterial activity. The biogenic FeNPs prepared in 40mL extract concentrations exhibited strongest antibacterial activity against Pseudomonas aeruginosa i.e. 22 (±0.5) mm than FeNPs with 20mL and 60mL extract concentrations i.e. 18 (±0.4) mm and 14 (±0.3) mm respectively. The optimized FeNPs with 40mL peel extract are not only highly active for ROS generation but also show no hemolytic activity. Thus, FeNPs synthesized using the greener approach are found to have high antibacterial activity along with biocompatibility. This high antibacterial activity can be referred to small size and large surface area.
一种绿色的方法被用来制备纳米粒子,这已经成为了一门革命性的学科。环保型反应装置、使用无毒材料和生产高活性的生物和光催化产品是这种更环保方法的一些好处。在这里,我们介绍了一种使用石榴皮提取物合成 Fe 氧化物 NPs 的绿色方法。通过使用不同浓度的果皮提取物(20mL、40mL 和 60mL)来优化 Fe 氧化物 NPs 的形成,以实现更小的尺寸和更好的形态。结果表明,使用 40mL 浓度的果皮提取物获得的 FeNPs 具有最小的尺寸。通过实施各种技术,即 UV-Vis 光谱、X 射线衍射、扫描电子显微镜和电子衍射能谱,证实了 NPs 的形态、尺寸和结晶度。通过 FT-IR 分析证实了负责还原和稳定 FeNPs 的生物化学物质。对生物合成的 FeNPs 进行了尺寸依赖性抗菌活性测试。在 40mL 提取物浓度下制备的生物合成 FeNPs 对铜绿假单胞菌表现出最强的抗菌活性,即 22(±0.5)mm,而在 20mL 和 60mL 提取物浓度下制备的 FeNPs 的抗菌活性分别为 18(±0.4)mm 和 14(±0.3)mm。在 40mL 果皮提取物中优化的 FeNPs 不仅具有很高的 ROS 生成活性,而且没有溶血活性。因此,使用更环保的方法合成的 FeNPs 具有高抗菌活性和生物相容性。这种高抗菌活性可以归因于较小的尺寸和较大的表面积。