Suppr超能文献

从神经精神临床记录中预测症状严重程度:2016 年 CEGS N-GRID 共享任务第 2 轨道概述。

Symptom severity prediction from neuropsychiatric clinical records: Overview of 2016 CEGS N-GRID shared tasks Track 2.

机构信息

University at Albany, State University of New York, Albany, NY, USA.

Simmons College, Boston, MA, USA.

出版信息

J Biomed Inform. 2017 Nov;75S:S62-S70. doi: 10.1016/j.jbi.2017.04.017. Epub 2017 Apr 25.

Abstract

The second track of the CEGS N-GRID 2016 natural language processing shared tasks focused on predicting symptom severity from neuropsychiatric clinical records. For the first time, initial psychiatric evaluation records have been collected, de-identified, annotated and shared with the scientific community. One-hundred-ten researchers organized in twenty-four teams participated in this track and submitted sixty-five system runs for evaluation. The top ten teams each achieved an inverse normalized macro-averaged mean absolute error score over 0.80. The top performing system employed an ensemble of six different machine learning-based classifiers to achieve a score 0.86. The task resulted to be generally easy with the exception of two specific classes of records: records with very few but crucial positive valence signals, and records describing patients predominantly affected by negative rather than positive valence. Those cases proved to be very challenging for most of the systems. Further research is required to consider the task solved. Overall, the results of this track demonstrate the effectiveness of data-driven approaches to the task of symptom severity classification.

摘要

CEGS N-GRID 2016 自然语言处理共享任务的第二轨道聚焦于从神经精神临床记录中预测症状严重程度。这是首次收集、去识别、标注初始精神评估记录,并与科学界共享。一百一十名研究人员组织成二十四支队伍参与了该轨道,并提交了六十五个系统运行进行评估。排名前十的队伍的平均倒数标准化宏平均值绝对误差评分均超过 0.80。表现最佳的系统采用了六个不同基于机器学习的分类器的集成,以获得 0.86 的分数。除了两类特定的记录外,该任务通常较为简单:一类记录中只有很少但至关重要的正价信号,另一类记录描述的患者主要受负价而不是正价影响。对于大多数系统来说,这些情况非常具有挑战性。需要进一步研究以认为该任务已经解决。总体而言,该轨道的结果表明,数据驱动方法在症状严重程度分类任务中是有效的。

相似文献

8
Symptom severity classification with gradient tree boosting.基于梯度提升树的症状严重程度分类。
J Biomed Inform. 2017 Nov;75S:S105-S111. doi: 10.1016/j.jbi.2017.05.015. Epub 2017 May 22.

引用本文的文献

8
10
Clinical concept extraction: A methodology review.临床概念提取:方法学综述。
J Biomed Inform. 2020 Sep;109:103526. doi: 10.1016/j.jbi.2020.103526. Epub 2020 Aug 6.

本文引用的文献

1
Clinician's guide to psychological assessment and testing: with forms and templates for effective practice.
J Ment Health. 2017 Oct;26(5):485. doi: 10.1080/09638237.2017.1322188. Epub 2017 May 11.
5
Symptom severity classification with gradient tree boosting.基于梯度提升树的症状严重程度分类。
J Biomed Inform. 2017 Nov;75S:S105-S111. doi: 10.1016/j.jbi.2017.05.015. Epub 2017 May 22.
9
Evaluating temporal relations in clinical text: 2012 i2b2 Challenge.评估临床文本中的时间关系:2012 i2b2 挑战赛。
J Am Med Inform Assoc. 2013 Sep-Oct;20(5):806-13. doi: 10.1136/amiajnl-2013-001628. Epub 2013 Apr 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验