使用心理功能用例进行残疾判定的信息提取框架
Information Extraction Framework for Disability Determination Using a Mental Functioning Use-Case.
作者信息
Zirikly Ayah, Desmet Bart, Newman-Griffis Denis, Marfeo Elizabeth E, McDonough Christine, Goldman Howard, Chan Leighton
机构信息
Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, United States.
Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, United States.
出版信息
JMIR Med Inform. 2022 Mar 18;10(3):e32245. doi: 10.2196/32245.
Natural language processing (NLP) in health care enables transformation of complex narrative information into high value products such as clinical decision support and adverse event monitoring in real time via the electronic health record (EHR). However, information technologies for mental health have consistently lagged because of the complexity of measuring and modeling mental health and illness. The use of NLP to support management of mental health conditions is a viable topic that has not been explored in depth. This paper provides a framework for the advanced application of NLP methods to identify, extract, and organize information on mental health and functioning to inform the decision-making process applied to assessing mental health. We present a use-case related to work disability, guided by the disability determination process of the US Social Security Administration (SSA). From this perspective, the following questions must be addressed about each problem that leads to a disability benefits claim: When did the problem occur and how long has it existed? How severe is it? Does it affect the person's ability to work? and What is the source of the evidence about the problem? Our framework includes 4 dimensions of medical information that are central to assessing disability-temporal sequence and duration, severity, context, and information source. We describe key aspects of each dimension and promising approaches for application in mental functioning. For example, to address temporality, a complete functional timeline must be created with all relevant aspects of functioning such as intermittence, persistence, and recurrence. Severity of mental health symptoms can be successfully identified and extracted on a 4-level ordinal scale from absent to severe. Some NLP work has been reported on the extraction of context for specific cases of wheelchair use in clinical settings. We discuss the links between the task of information source assessment and work on source attribution, coreference resolution, event extraction, and rule-based methods. Gaps were identified in NLP applications that directly applied to the framework and in existing relevant annotated data sets. We highlighted NLP methods with the potential for advanced application in the field of mental functioning. Findings of this work will inform the development of instruments for supporting SSA adjudicators in their disability determination process. The 4 dimensions of medical information may have relevance for a broad array of individuals and organizations responsible for assessing mental health function and ability. Further, our framework with 4 specific dimensions presents significant opportunity for the application of NLP in the realm of mental health and functioning beyond the SSA setting, and it may support the development of robust tools and methods for decision-making related to clinical care, program implementation, and other outcomes.
医疗保健领域的自然语言处理(NLP)能够通过电子健康记录(EHR)将复杂的叙述性信息实时转化为高价值产品,如临床决策支持和不良事件监测。然而,由于测量和建模心理健康与疾病的复杂性,心理健康领域的信息技术一直滞后。利用NLP来支持心理健康状况的管理是一个尚未深入探讨的可行课题。本文提供了一个框架,用于NLP方法的高级应用,以识别、提取和组织有关心理健康及功能的信息,为评估心理健康的决策过程提供参考。我们以美国社会保障管理局(SSA)的残疾判定过程为指导,呈现了一个与工作残疾相关的用例。从这个角度来看,对于每一个导致残疾福利申请的问题,必须解决以下问题:问题何时出现,存在多久了?严重程度如何?是否影响个人工作能力?以及关于该问题的证据来源是什么?我们的框架包括评估残疾的四个核心医疗信息维度——时间顺序和持续时间、严重程度、背景以及信息来源。我们描述了每个维度的关键方面以及在心理功能应用中的有前景的方法。例如,为了解决时间性问题,必须创建一个包含功能所有相关方面(如间歇性、持续性和复发)的完整功能时间表。心理健康症状的严重程度可以通过从无到严重的四级有序量表成功识别和提取。已有一些关于在临床环境中提取特定轮椅使用案例背景信息的NLP工作报道。我们讨论了信息来源评估任务与来源归因、共指消解、事件提取和基于规则方法的工作之间的联系。在直接应用于该框架的NLP应用以及现有的相关注释数据集中发现了差距。我们强调了在心理功能领域具有高级应用潜力的NLP方法。这项工作的结果将为支持SSA裁决者进行残疾判定过程的工具开发提供参考。这四个医疗信息维度可能与负责评估心理健康功能和能力的广泛个人和组织相关。此外,我们具有四个特定维度的框架为NLP在SSA环境之外的心理健康和功能领域的应用提供了重大机会,并且它可能支持开发与临床护理、项目实施和其他结果相关的强大决策工具和方法。
相似文献
JMIR Med Inform. 2022-3-18
J Biomed Semantics. 2020-3-10
Disabil Rehabil. 2024-8
J Med Internet Res. 2021-5-4
引用本文的文献
Glob Ment Health (Camb). 2024-12-13
本文引用的文献
J Healthc Inform Res. 2019-2-27
Proc Conf Empir Methods Nat Lang Process. 2019-11
Sci Rep. 2020-4-28
J Biomed Semantics. 2020-3-10
J Med Internet Res. 2020-3-6