Ankele Michael, Lim Lek-Heng, Groeschel Samuel, Schultz Thomas
Institute of Computer Science II, University of Bonn, Friedrich-Ebert-Allee 144, 53113, Bonn, Germany.
Department of Statistics, University of Chicago, 5747 S Ellis Ave, Chicago, IL, 60637, USA.
Int J Comput Assist Radiol Surg. 2017 Aug;12(8):1257-1270. doi: 10.1007/s11548-017-1593-6. Epub 2017 Apr 29.
Develop a multi-fiber tractography method that produces fast and robust results based on input data from a wide range of diffusion MRI protocols, including high angular resolution diffusion imaging, multi-shell imaging, and clinical diffusion spectrum imaging (DSI) METHODS: In a unified deconvolution framework for different types of diffusion MRI protocols, we represent fiber orientation distribution functions as higher-order tensors, which permits use of a novel positive definiteness constraint (H-psd) that makes estimation from noisy input more robust. The resulting directions are used for deterministic fiber tracking with branching.
We quantify accuracy on simulated data, as well as condition numbers and computation times on clinical data. We qualitatively investigate the benefits when processing suboptimal data, and show direct comparisons to several state-of-the-art techniques.
The proposed method works faster than state-of-the-art approaches, achieves higher angular resolution on simulated data with known ground truth, and plausible results on clinical data. In addition to working with the same data as previous methods for multi-tissue deconvolution, it also supports DSI data.
基于来自广泛扩散磁共振成像(MRI)协议的输入数据,开发一种能产生快速且稳健结果的多纤维束成像方法,这些协议包括高角分辨率扩散成像、多壳层成像以及临床扩散谱成像(DSI)。方法:在针对不同类型扩散MRI协议的统一去卷积框架中,我们将纤维方向分布函数表示为高阶张量,这允许使用一种新颖的正定约束(H-psd),使从有噪声的输入进行估计更加稳健。所得方向用于带有分支的确定性纤维追踪。结果:我们在模拟数据上量化准确性,以及在临床数据上量化条件数和计算时间。我们定性研究处理次优数据时的益处,并展示与几种先进技术的直接比较。结论:所提出的方法比现有技术方法运行得更快,在具有已知真实情况的模拟数据上实现了更高的角分辨率,并且在临床数据上得到了合理的结果。除了能处理与先前多组织去卷积方法相同的数据外,它还支持DSI数据。