Christiaens Daan, Sunaert Stefan, Suetens Paul, Maes Frederik
KU Leuven, Department of Electrical Engineering, ESAT/PSI, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium.
KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium; UZ Leuven, Department of Radiology, Leuven, Belgium; UZ Leuven, Medical Imaging Research Center, Leuven, Belgium.
Neuroimage. 2017 Feb 1;146:507-517. doi: 10.1016/j.neuroimage.2016.10.040. Epub 2016 Oct 27.
Diffusion-weighted imaging (DWI) facilitates probing neural tissue structure non-invasively by measuring its hindrance to water diffusion. Analysis of DWI is typically based on generative signal models for given tissue geometry and microstructural properties. In this work, we generalize multi-tissue spherical deconvolution to a blind source separation problem under convexity and nonnegativity constraints. This spherical factorization approach decomposes multi-shell DWI data, represented in the basis of spherical harmonics, into tissue-specific orientation distribution functions and corresponding response functions, without assuming the latter as known thus fully unsupervised. In healthy human brain data, the resulting components are associated with white matter fibres, grey matter, and cerebrospinal fluid. The factorization results are on par with state-of-the-art supervised methods, as demonstrated also in Monte-Carlo simulations evaluating accuracy and precision of the estimated response functions and orientation distribution functions of each component. In animal data and in the presence of oedema, the proposed factorization is able to recover unseen tissue structure, solely relying on DWI. As such, our method broadens the applicability of spherical deconvolution techniques to exploratory analysis of tissue structure in data where priors are uncertain or hard to define.
扩散加权成像(DWI)通过测量神经组织对水扩散的阻碍,有助于非侵入性地探究神经组织结构。DWI分析通常基于给定组织几何结构和微观结构特性的生成信号模型。在这项工作中,我们将多组织球面反褶积推广到凸性和非负性约束下的盲源分离问题。这种球面分解方法将以球谐函数为基础表示的多壳DWI数据分解为组织特异性的方向分布函数和相应的响应函数,无需假设后者已知,因此是完全无监督的。在健康人脑数据中,得到的成分与白质纤维、灰质和脑脊液相关。分解结果与当前最先进的监督方法相当,在评估每个成分的估计响应函数和方向分布函数的准确性和精度的蒙特卡罗模拟中也得到了证明。在动物数据和存在水肿的情况下,所提出的分解方法仅依靠DWI就能恢复未见过的组织结构。因此,我们的方法拓宽了球面反褶积技术在先前信息不确定或难以定义的数据中进行组织结构探索性分析的适用性。