Jung Jae-Hyun, Pu Tian, Peli Eli
Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA.
School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu, China.
IS&T Int Symp Electron Imaging. 2016;2016. doi: 10.2352/ISSN.2470-1173.2016.16.HVEI-111. Epub 2016 Feb 14.
Edges derived from abrupt luminance changes in images carry essential information for object recognition. Typical binary edge images (black edges on white background or white edges on black background) have been used to represent features (edges and cusps) in scenes. However, the polarity of cusps and edges may contain important depth information (depth from shading) which is lost in the binary edge representation. This depth information may be restored, to some degree, using bipolar edges. We compared recognition rates of 16 binary edge images, or bipolar features, by 26 subjects. Object recognition rates were higher with bipolar edges and the improvement was significant in scenes with complex backgrounds.
图像中因亮度突然变化而产生的边缘携带了用于物体识别的重要信息。典型的二值边缘图像(白色背景上的黑色边缘或黑色背景上的白色边缘)已被用于表示场景中的特征(边缘和尖点)。然而,尖点和边缘的极性可能包含重要的深度信息(由阴影产生的深度),而这些信息在二值边缘表示中会丢失。使用双极性边缘可以在一定程度上恢复这些深度信息。我们让26名受试者比较了16幅二值边缘图像或双极性特征的识别率。双极性边缘的物体识别率更高,并且在具有复杂背景的场景中这种提高非常显著。