Suppr超能文献

将癫痫样放电后发放理解为节律性振荡瞬变。

Understanding Epileptiform After-Discharges as Rhythmic Oscillatory Transients.

作者信息

Baier Gerold, Taylor Peter N, Wang Yujiang

机构信息

Cell and Developmental Biology, University College LondonLondon, UK.

Institute of Neuroscience, Newcastle UniversityNewcastle upon Tyne, UK.

出版信息

Front Comput Neurosci. 2017 Apr 18;11:25. doi: 10.3389/fncom.2017.00025. eCollection 2017.

Abstract

Electro-cortical activity in patients with epilepsy may show abnormal rhythmic transients in response to stimulation. Even when using the same stimulation parameters in the same patient, wide variability in the duration of transient response has been reported. These transients have long been considered important for the mapping of the excitability levels in the epileptic brain but their dynamic mechanism is still not well understood. To investigate the occurrence of abnormal transients dynamically, we use a thalamo-cortical neural population model of epileptic spike-wave activity and study the interaction between slow and fast subsystems. In a reduced version of the thalamo-cortical model, slow wave oscillations arise from a fold of cycles (FoC) bifurcation. This marks the onset of a region of bistability between a high amplitude oscillatory rhythm and the background state. In vicinity of the bistability in parameter space, the model has excitable dynamics, showing prolonged rhythmic transients in response to suprathreshold pulse stimulation. We analyse the state space geometry of the bistable and excitable states, and find that the rhythmic transient arises when the impending FoC bifurcation deforms the state space and creates an area of locally reduced attraction to the fixed point. This area essentially allows trajectories to dwell there before escaping to the stable steady state, thus creating rhythmic transients. In the full thalamo-cortical model, we find a similar FoC bifurcation structure. Based on the analysis, we propose an explanation of why stimulation induced epileptiform activity may vary between trials, and predict how the variability could be related to ongoing oscillatory background activity. We compare our dynamic mechanism with other mechanisms (such as a slow parameter change) to generate excitable transients, and we discuss the proposed excitability mechanism in the context of stimulation responses in the epileptic cortex.

摘要

癫痫患者的脑电活动在受到刺激时可能会显示出异常的节律性瞬态。即使在同一患者中使用相同的刺激参数,也有报道称瞬态反应的持续时间存在很大差异。长期以来,这些瞬态一直被认为对于绘制癫痫大脑中的兴奋性水平很重要,但其动态机制仍未得到很好的理解。为了动态研究异常瞬态的发生,我们使用了一个癫痫棘波-慢波活动的丘脑-皮质神经群体模型,并研究了慢子系统和快子系统之间的相互作用。在丘脑-皮质模型的简化版本中,慢波振荡源于周期折叠(FoC)分岔。这标志着高振幅振荡节律与背景状态之间双稳态区域的开始。在参数空间中双稳态附近,该模型具有可兴奋动力学,对阈上脉冲刺激显示出延长的节律性瞬态。我们分析了双稳态和可兴奋状态的状态空间几何形状,发现当即将发生的FoC分岔使状态空间变形并产生对固定点局部吸引力降低的区域时,就会出现节律性瞬态。这个区域本质上允许轨迹在逃逸到稳定稳态之前在那里停留,从而产生节律性瞬态。在完整的丘脑-皮质模型中,我们发现了类似的FoC分岔结构。基于该分析,我们提出了一个关于为什么刺激诱发的癫痫样活动在不同试验之间可能会有所不同的解释,并预测了这种变异性如何与正在进行的振荡背景活动相关。我们将我们的动态机制与其他产生可兴奋瞬态的机制(如缓慢参数变化)进行了比较,并在癫痫皮层刺激反应的背景下讨论了所提出的兴奋性机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1327/5394159/31997c48fcae/fncom-11-00025-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验