Suppr超能文献

不仅仅是一个生动的比喻:使用霍普菲尔德网络对细胞发育景观进行建模。

Not just a colourful metaphor: modelling the landscape of cellular development using Hopfield networks.

作者信息

Fard Atefeh Taherian, Srihari Sriganesh, Mar Jessica C, Ragan Mark A

机构信息

Institute for Molecular Bioscience and ARC Centre of Excellence in Bioinformatics, The University of Queensland, St Lucia, Brisbane, QLD, Australia.

Department of Systems & Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA.

出版信息

NPJ Syst Biol Appl. 2016 Feb 18;2:16001. doi: 10.1038/npjsba.2016.1. eCollection 2016.

Abstract

The epigenetic landscape was introduced by Conrad Waddington as a metaphor of cellular development. Like a ball rolling down a hillside is channelled through a succession of valleys until it reaches the bottom, cells follow specific trajectories from a pluripotent state to a committed state. Transcription factors (TFs) interacting as a network (the gene regulatory network (GRN)) orchestrate this developmental process within each cell. Here, we quantitatively model the epigenetic landscape using a kind of artificial neural network called the Hopfield network (HN). An HN is composed of nodes (genes/TFs) and weighted undirected edges, resulting in a weight matrix () that stores interactions among the nodes over the entire network. We used gene co-expression to compute the edge weights. Through , we then associate an energy score () to each input pattern (pattern of co-expression for a specific developmental stage) such that each pattern has a specific We propose that, based on the co-expression values stored in , HN associates lower values to stable phenotypic states and higher to transient states. We validate our model using time course gene-expression data sets representing stages of development across 12 biological processes including differentiation of human embryonic stem cells into specialized cells, differentiation of THP1 monocytes to macrophages during immune response and trans-differentiation of epithelial to mesenchymal cells in cancer. We observe that transient states have higher energy than the stable phenotypic states, yielding an arc-shaped trajectory. This relationship was confirmed by perturbation analysis. HNs offer an attractive framework for quantitative modelling of cell differentiation (as a landscape) from empirical data. Using HNs, we identify genes and TFs that drive cell-fate transitions, and gain insight into the global dynamics of GRNs.

摘要

表观遗传景观由康拉德·沃丁顿提出,作为细胞发育的一种隐喻。就像一个滚下山坡的球会沿着一系列山谷前行直到到达底部一样,细胞从多能状态沿着特定轨迹发展到定向状态。作为一个网络相互作用的转录因子(TFs)(基因调控网络(GRN))在每个细胞内协调这一发育过程。在这里,我们使用一种称为霍普菲尔德网络(HN)的人工神经网络对表观遗传景观进行定量建模。一个HN由节点(基因/TFs)和加权无向边组成,从而产生一个权重矩阵(),该矩阵存储整个网络中节点之间的相互作用。我们使用基因共表达来计算边权重。然后,通过,我们为每个输入模式(特定发育阶段的共表达模式)关联一个能量分数(),使得每个模式都有一个特定的。我们提出,基于存储在中的共表达值,HN将较低的 值与稳定的表型状态相关联,而将较高的 值与瞬时状态相关联。我们使用代表12个生物过程发育阶段的时间进程基因表达数据集验证了我们的模型,这些过程包括人类胚胎干细胞分化为特化细胞、免疫反应期间THP1单核细胞向巨噬细胞的分化以及癌症中上皮细胞向间充质细胞的转分化。我们观察到瞬时状态的能量高于稳定的表型状态,产生一条弧形轨迹。这种关系通过扰动分析得到了证实。HN为从经验数据对细胞分化(作为一种景观)进行定量建模提供了一个有吸引力的框架。使用HN,我们识别出驱动细胞命运转变的基因和TFs,并深入了解GRNs的全局动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/456f/5516853/8631a7ce9f4c/npjsba20161-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验