Rensi Stefano, Altman Russ B
Department of Bioengineering, Stanford University, Shriram Center Room 213, 443 Via Ortega MC 4245, Stanford, CA 94305, United States.
Comput Struct Biotechnol J. 2017 Mar 24;15:320-327. doi: 10.1016/j.csbj.2017.03.003. eCollection 2017.
Studying analog series to find structural transformations that enhance the activity and ADME properties of lead compounds is an important part of drug development. Matched molecular pair (MMP) search is a powerful tool for analog analysis that imitates researchers' ability to select pairs of compounds that differ only by small well-defined transformations. Abstraction is a challenge for existing MMP search algorithms, which can result in the omission of relevant, inexact MMPs, and inclusion of irrelevant, contextually dissimilar MMPs. In this work, we present a new method for MMP search that returns approximate results and enables flexible control over abstraction of contextual information. We illustrate the concepts and mechanics of our method with a series of exemplar MMP queries, and then benchmark search accuracy using MMPs found by fragment indexing. We show that we can search for MMPs in a context dependent manner, and accurately approximate context independent fragment index based MMP search over a range of fingerprint and dataset conditions. Our method can be used to search for pairwise correspondences among analog sets and bolster MMP datasets where data is missing or incomplete.
研究类似物系列以找到增强先导化合物活性和药物代谢及药代动力学性质的结构转变是药物开发的重要组成部分。匹配分子对(MMP)搜索是一种强大的类似物分析工具,它模仿研究人员选择仅通过小的明确转变而不同的化合物对的能力。抽象是现有MMP搜索算法面临的一个挑战,这可能导致遗漏相关的、不精确的MMP,并包含不相关的、上下文不同的MMP。在这项工作中,我们提出了一种新的MMP搜索方法,该方法返回近似结果,并能够灵活控制上下文信息的抽象。我们用一系列示例性MMP查询来说明我们方法的概念和机制,然后使用通过片段索引找到的MMP对搜索准确性进行基准测试。我们表明,我们可以以上下文相关的方式搜索MMP,并在一系列指纹和数据集条件下准确近似基于上下文无关片段索引的MMP搜索。我们的方法可用于搜索类似物集之间的成对对应关系,并在数据缺失或不完整的情况下支持MMP数据集。