Suppr超能文献

肽基脯氨酰异构酶Pin1在阿尔茨海默病突触可塑性破坏中的病理作用

Pathological Role of Peptidyl-Prolyl Isomerase Pin1 in the Disruption of Synaptic Plasticity in Alzheimer's Disease.

作者信息

Xu Lingyan, Ren Zhiyun, Chow Frances E, Tsai Richard, Liu Tongzheng, Rizzolio Flavio, Boffo Silvia, Xu Yungen, Huang Shaohui, Lippa Carol F, Gong Yuesong

机构信息

Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, Department of Biopharmaceutics and Food Science, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.

Department of Neurology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.

出版信息

Neural Plast. 2017;2017:3270725. doi: 10.1155/2017/3270725. Epub 2017 Mar 26.

Abstract

Synaptic loss is the structural basis for memory impairment in Alzheimer's disease (AD). While the underlying pathological mechanism remains elusive, it is known that misfolded proteins accumulate as -amyloid (A) plaques and hyperphosphorylated Tau tangles decades before the onset of clinical disease. The loss of Pin1 facilitates the formation of these misfolded proteins in AD. Pin1 protein controls cell-cycle progression and determines the fate of proteins by the ubiquitin proteasome system. The activity of the ubiquitin proteasome system directly affects the functional and structural plasticity of the synapse. We localized Pin1 to dendritic rafts and postsynaptic density (PSD) and found the pathological loss of Pin1 within the synapses of AD brain cortical tissues. The loss of Pin1 activity may alter the ubiquitin-regulated modification of PSD proteins and decrease levels of Shank protein, resulting in aberrant synaptic structure. The loss of Pin1 activity, induced by oxidative stress, may also render neurons more susceptible to the toxicity of oligomers of A and to excitation, thereby inhibiting NMDA receptor-mediated synaptic plasticity and exacerbating NMDA receptor-mediated synaptic degeneration. These results suggest that loss of Pin1 activity could lead to the loss of synaptic plasticity in the development of AD.

摘要

突触丧失是阿尔茨海默病(AD)记忆障碍的结构基础。尽管其潜在的病理机制仍不清楚,但已知错误折叠的蛋白质会在临床疾病发作前数十年以淀粉样蛋白(A)斑块和过度磷酸化的 Tau 缠结形式积累。Pin1 的缺失促进了 AD 中这些错误折叠蛋白质的形成。Pin1 蛋白控制细胞周期进程,并通过泛素蛋白酶体系统决定蛋白质的命运。泛素蛋白酶体系统的活性直接影响突触的功能和结构可塑性。我们将 Pin1 定位到树突筏和突触后致密区(PSD),并发现 AD 脑皮质组织突触内 Pin1 的病理性丧失。Pin1 活性的丧失可能会改变 PSD 蛋白的泛素调节修饰,并降低 Shank 蛋白水平,导致突触结构异常。由氧化应激诱导的 Pin1 活性丧失,也可能使神经元对 A 寡聚体的毒性和兴奋更敏感,从而抑制 NMDA 受体介导的突触可塑性并加剧 NMDA 受体介导的突触退化。这些结果表明 Pin1 活性丧失可能导致 AD 发展过程中突触可塑性的丧失。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/309b/5385220/9d39fc04a9eb/NP2017-3270725.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验