Jensen Michael, Davis Ronald
Stanford Genome Technology Center, Department of Biochemistry, Stanford University , Palo Alto, California 94304, United States.
Department of Genetics, Stanford University , Palo Alto, California 94304, United States.
Biochemistry. 2017 May 9;56(18):2417-2424. doi: 10.1021/acs.biochem.7b00010. Epub 2017 May 1.
Methods of error filtration and correction post-gene assembly are a major bottleneck in the synthetic biology pipeline. Current oligonucleotide purification strategies, including polyacrylamide gel electrophoresis and high-performance liquid chromatography, are often expensive and labor-intensive, give low mass recovery, and contain hazardous chemicals. To circumvent these limitations, we explored an enzymatic means of oligonucleotide purification using RecJ, which is the only known exonuclease to digest single-stranded DNA (ssDNA) in the 5' to 3' direction. As a potential application to remove failure strands generated in oligonucleotide synthesis, we found RecJ does not recognize the 5' dimethoxytrityl blocking group and could therefore be used to specifically target and digest unblocked failure strands. In combination with ssDNA binding protein (SSBP), which acts to recruit RecJ via C-terminal recognition, secondary structure formation is precluded, allowing for enhanced RecJ processivity. Using this method to purify crude trityl-on oligonucleotides, we also found on average 30 units of RecJ with 0.5 μg of SSBP digests 53 pmol of 5' hydroxylated ssDNA (60 min at 37 °C). With these parameters, the average purity is increased by 8%. As such, this novel method can be adapted to most laboratory practices, particularly those with DNA synthesis automation as a simple, inexpensive (<$4), and eco-friendly means of oligonucleotide trityl-on purification.
基因组装后错误过滤和校正的方法是合成生物学流程中的一个主要瓶颈。当前的寡核苷酸纯化策略,包括聚丙烯酰胺凝胶电泳和高效液相色谱,通常成本高昂且 labor-intensive,质量回收率低,还含有有害化学物质。为了克服这些限制,我们探索了一种使用 RecJ 的寡核苷酸酶促纯化方法,RecJ 是唯一已知的能在 5' 到 3' 方向消化单链 DNA(ssDNA)的核酸外切酶。作为去除寡核苷酸合成中产生的失败链的潜在应用,我们发现 RecJ 不识别 5' 二甲氧基三苯甲基阻断基团,因此可用于特异性靶向和消化未阻断的失败链。与通过 C 端识别招募 RecJ 的单链 DNA 结合蛋白(SSBP)相结合,可防止二级结构形成,从而提高 RecJ 的持续合成能力。使用这种方法纯化粗制的带三苯甲基寡核苷酸时,我们还发现平均 30 单位的 RecJ 与 0.5 μg 的 SSBP 在 37°C 下 60 分钟可消化 53 pmol 的 5' 羟基化 ssDNA。基于这些参数,平均纯度提高了 8%。因此,这种新方法可适用于大多数实验室操作,特别是那些具有 DNA 合成自动化的操作,作为一种简单、廉价(<$4)且环保的寡核苷酸带三苯甲基纯化方法。