Suppr超能文献

使用带线搜索的过松弛单调快速迭代收缩阈值算法加速稀疏重建。

Accelerating Overrelaxed and Monotone Fast Iterative Shrinkage-Thresholding Algorithms With Line Search for Sparse Reconstructions.

出版信息

IEEE Trans Image Process. 2017 Jul;26(7):3569-3578. doi: 10.1109/TIP.2017.2699483. Epub 2017 Apr 28.

Abstract

Recently, specially crafted unidimensional optimization has been successfully used as line search to accelerate the overrelaxed and monotone fast iterative shrinkage-threshold algorithm (OMFISTA) for computed tomography. In this paper, we extend the use of fast line search to the monotone fast iterative shrinkage-threshold algorithm (MFISTA) and some of its variants. Line search can accelerate the FISTA family considering typical synthesis priors, such as the ℓ-norm of wavelet coefficients, as well as analysis priors, such as anisotropic total variation. This paper describes these new MFISTA and OMFISTA with line search, and also shows through numerical results that line search improves their performance for tomographic high-resolution image reconstruction.

摘要

最近,经过精心设计的单维优化已成功用作线搜索,以加速用于计算机断层扫描的过松弛单调快速迭代收缩阈值算法 (OMFISTA)。在本文中,我们将快速线搜索扩展到单调快速迭代收缩阈值算法 (MFISTA) 及其变体。线搜索可以加速 FISTA 族,考虑典型的综合先验,如小波系数的 ℓ-范数,以及分析先验,如各向异性全变差。本文描述了这些带有线搜索的新 MFISTA 和 OMFISTA,并且还通过数值结果表明,线搜索提高了它们在层析高分辨率图像重建中的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验