Suppr超能文献

利用不同稀疏和低秩模型的压缩感知技术加速软骨 3D 映射。

Accelerating 3D-T mapping of cartilage using compressed sensing with different sparse and low rank models.

机构信息

Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.

出版信息

Magn Reson Med. 2018 Oct;80(4):1475-1491. doi: 10.1002/mrm.27138. Epub 2018 Feb 25.

Abstract

PURPOSE

To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T mapping of cartilage and to reduce total scan times without degrading the estimation of T relaxation times.

METHODS

Fully sampled 3D-T datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included.

RESULTS

Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T error below 6.5% on T relaxation times with AF up to 10, when spatial filtering was used before T fitting, at the expense of smoothing the T maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T fitting.

CONCLUSION

Accelerating 3D-T mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T error of 6.5%.

摘要

目的

评估使用压缩感知(CS)加速软骨 3D-T 映射并减少总扫描时间而不降低 T 弛豫时间估计的可行性。

方法

对完全采样的 3D-T 数据集进行了 2-10 倍的回顾性欠采样。比较了 12 种不同稀疏变换的 CS 重建,包括有限差分、时空小波、基于主成分分析(PCA)和 K-均值奇异值分解(K-SVD)的学习变换、显式指数模型、低秩和低秩加稀疏模型。还测试了 T 参数估计前的空间滤波。包括合成体模(n=6)和体内人膝关节软骨数据集(n=7)。

结果

大多数 CS 方法在加速因子(AF)为 2 时表现良好,相对 T 误差低于 4.5%。一些稀疏变换,如时空有限差分(STFD)、指数字典(EXP)和低秩与空间有限差分相结合(L+S SFD),显著提高了这一性能,在使用 T 拟合前进行空间滤波时,在 AF 高达 10 的情况下,T 弛豫时间的平均相对 T 误差低于 6.5%,但代价是平滑 T 图。在使用 T 拟合前进行空间滤波时,STFD 在 AF=10 时的误差为 5.1%。

结论

当使用 STFD、EXP 或 L+S SFD 正则化器时,CS 加速软骨 3D-T 映射在 AF 高达 10 时是可行的。这三种最佳 CS 方法在合成体模和体内膝关节软骨上的 AF 高达 10 时表现令人满意,T 误差为 6.5%。

相似文献

引用本文的文献

4
K2S Challenge: From Undersampled K-Space to Automatic Segmentation.K2S挑战:从欠采样的K空间到自动分割
Bioengineering (Basel). 2023 Feb 18;10(2):267. doi: 10.3390/bioengineering10020267.
5
Latest advancements in imaging techniques in OA.骨关节炎成像技术的最新进展。
Ther Adv Musculoskelet Dis. 2022 Dec 26;14:1759720X221146621. doi: 10.1177/1759720X221146621. eCollection 2022.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验