Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York.
Magn Reson Med. 2018 Oct;80(4):1475-1491. doi: 10.1002/mrm.27138. Epub 2018 Feb 25.
To evaluate the feasibility of using compressed sensing (CS) to accelerate 3D-T mapping of cartilage and to reduce total scan times without degrading the estimation of T relaxation times.
Fully sampled 3D-T datasets were retrospectively undersampled by factors 2-10. CS reconstruction using 12 different sparsifying transforms were compared, including finite differences, temporal and spatial wavelets, learned transforms using principal component analysis (PCA) and K-means singular value decomposition (K-SVD), explicit exponential models, low rank and low rank plus sparse models. Spatial filtering prior to T parameter estimation was also tested. Synthetic phantom (n = 6) and in vivo human knee cartilage datasets (n = 7) were included.
Most CS methods performed satisfactorily for an acceleration factor (AF) of 2, with relative T error lower than 4.5%. Some sparsifying transforms, such as spatiotemporal finite difference (STFD), exponential dictionaries (EXP) and low rank combined with spatial finite difference (L+S SFD) significantly improved this performance, reaching average relative T error below 6.5% on T relaxation times with AF up to 10, when spatial filtering was used before T fitting, at the expense of smoothing the T maps. The STFD achieved 5.1% error at AF = 10 with spatial filtering prior to T fitting.
Accelerating 3D-T mapping of cartilage with CS is feasible up to AF of 10 when using STFD, EXP or L+S SFD regularizers. These three best CS methods performed satisfactorily on synthetic phantom and in vivo knee cartilage for AFs up to 10, with T error of 6.5%.
评估使用压缩感知(CS)加速软骨 3D-T 映射并减少总扫描时间而不降低 T 弛豫时间估计的可行性。
对完全采样的 3D-T 数据集进行了 2-10 倍的回顾性欠采样。比较了 12 种不同稀疏变换的 CS 重建,包括有限差分、时空小波、基于主成分分析(PCA)和 K-均值奇异值分解(K-SVD)的学习变换、显式指数模型、低秩和低秩加稀疏模型。还测试了 T 参数估计前的空间滤波。包括合成体模(n=6)和体内人膝关节软骨数据集(n=7)。
大多数 CS 方法在加速因子(AF)为 2 时表现良好,相对 T 误差低于 4.5%。一些稀疏变换,如时空有限差分(STFD)、指数字典(EXP)和低秩与空间有限差分相结合(L+S SFD),显著提高了这一性能,在使用 T 拟合前进行空间滤波时,在 AF 高达 10 的情况下,T 弛豫时间的平均相对 T 误差低于 6.5%,但代价是平滑 T 图。在使用 T 拟合前进行空间滤波时,STFD 在 AF=10 时的误差为 5.1%。
当使用 STFD、EXP 或 L+S SFD 正则化器时,CS 加速软骨 3D-T 映射在 AF 高达 10 时是可行的。这三种最佳 CS 方法在合成体模和体内膝关节软骨上的 AF 高达 10 时表现令人满意,T 误差为 6.5%。