Suppr超能文献

空间偏移拉曼光谱法(SORS)对皮质下骨组织的敏感性。

Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue.

作者信息

Feng Guanping, Ochoa Marien, Maher Jason R, Awad Hani A, Berger Andrew J

机构信息

The Institute of Optics, University of Rochester, 275 Hutchinson Road, Rochester, New York, 14627.

Department of Biomedical Engineering, University of Rochester, 207 Robert B. Goergen Hall, Rochester, New York, 14627.

出版信息

J Biophotonics. 2017 Aug;10(8):990-996. doi: 10.1002/jbio.201600317. Epub 2017 May 2.

Abstract

The development of spatially offset Raman spectroscopy (SORS) has enabled deep, non-invasive chemical characterization of turbid media. Here, we use SORS to measure subcortical bone tissue and depth-resolved biochemical variability in intact, exposed murine bones. We also apply the technique to study a mouse model of the genetic bone disorder osteogenesis imperfecta. The results suggest that SORS is more sensitive to disease-related biochemical differences in subcortical trabecular bone and marrow than conventional Raman measurements.

摘要

空间偏移拉曼光谱(SORS)的发展使得对浑浊介质进行深度、非侵入性的化学表征成为可能。在此,我们使用SORS来测量完整暴露的小鼠骨骼中的皮质下骨组织以及深度分辨的生化变异性。我们还应用该技术研究遗传性骨疾病成骨不全症的小鼠模型。结果表明,与传统拉曼测量相比,SORS对皮质下小梁骨和骨髓中与疾病相关的生化差异更为敏感。

相似文献

1
Sensitivity of spatially offset Raman spectroscopy (SORS) to subcortical bone tissue.
J Biophotonics. 2017 Aug;10(8):990-996. doi: 10.1002/jbio.201600317. Epub 2017 May 2.
4
Non-invasive Imaging of Cancer Using Surface-Enhanced Spatially Offset Raman Spectroscopy (SESORS).
Theranostics. 2019 Aug 13;9(20):5899-5913. doi: 10.7150/thno.36321. eCollection 2019.
6
Spatially Offset Raman Spectroscopy toward In Vivo Assessment of the Adipose Tissue in Cardiometabolic Pathologies.
Anal Chem. 2024 Jun 25;96(25):10373-10379. doi: 10.1021/acs.analchem.4c01477. Epub 2024 Jun 12.
7
Determining ideal offsets of spatially offset Raman spectroscopy for transcutaneous measurements-A Monte Carlo study.
J Biophotonics. 2024 Aug;17(8):e202300564. doi: 10.1002/jbio.202300564. Epub 2024 Jun 17.
8
Prediction of sublayer depth in turbid media using spatially offset Raman spectroscopy.
Anal Chem. 2008 Nov 1;80(21):8146-52. doi: 10.1021/ac801219a. Epub 2008 Sep 12.
9
Spatially offset Raman spectroscopy for biomedical applications.
Chem Soc Rev. 2021 Jan 7;50(1):556-568. doi: 10.1039/d0cs00855a. Epub 2020 Nov 10.

引用本文的文献

2
Raman Microscopy and Bone.
Methods Mol Biol. 2025;2885:683-691. doi: 10.1007/978-1-0716-4306-8_33.
3
Bone health: Quality versus quantity.
J Pediatr Soc North Am. 2024 Apr 7;7:100054. doi: 10.1016/j.jposna.2024.100054. eCollection 2024 May.
4
Spatially Offset Raman Spectroscopy toward In Vivo Assessment of the Adipose Tissue in Cardiometabolic Pathologies.
Anal Chem. 2024 Jun 25;96(25):10373-10379. doi: 10.1021/acs.analchem.4c01477. Epub 2024 Jun 12.
6
Assessment of spatially offset Raman spectroscopy to detect differences in bone matrix quality.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Dec 15;303:123240. doi: 10.1016/j.saa.2023.123240. Epub 2023 Aug 10.
7
Raman Spectroscopy and Its Modifications Applied to Biological and Medical Research.
Cells. 2022 Jan 24;11(3):386. doi: 10.3390/cells11030386.
8
From Raman to SESORRS: moving deeper into cancer detection and treatment monitoring.
Chem Commun (Camb). 2021 Nov 23;57(93):12436-12451. doi: 10.1039/d1cc04805h.
9
Calibration Technique for Suppressing Residual Etalon Artifacts in Slit-Averaged Raman Spectroscopy.
Appl Spectrosc. 2022 Feb;76(2):255-261. doi: 10.1177/00037028211046643. Epub 2021 Oct 1.
10
Raman Spectroscopy in Skeletal Tissue Disorders and Tissue Engineering: Present and Prospective.
Tissue Eng Part B Rev. 2022 Oct;28(5):949-965. doi: 10.1089/ten.TEB.2021.0139. Epub 2022 Jan 5.

本文引用的文献

1
Label-Free Measurements of Tenofovir Diffusion Coefficients in a Microbicide Gel Using Raman Spectroscopy.
J Pharm Sci. 2017 Feb;106(2):639-644. doi: 10.1016/j.xphs.2016.09.030. Epub 2016 Nov 9.
2
Co-localized confocal Raman spectroscopy and optical coherence tomography (CRS-OCT) for depth-resolved analyte detection in tissue.
Biomed Opt Express. 2015 May 8;6(6):2022-35. doi: 10.1364/BOE.6.002022. eCollection 2015 Jun 1.
5
A subcutaneous Raman needle probe.
Appl Spectrosc. 2013 Mar;67(3):349-54. doi: 10.1366/12-06651.
7
Heavy metal lead exposure, osteoporotic-like phenotype in an animal model, and depression of Wnt signaling.
Environ Health Perspect. 2013 Jan;121(1):97-104. doi: 10.1289/ehp.1205374. Epub 2012 Oct 19.
10
Age-specific profiles of tissue-level composition and mechanical properties in murine cortical bone.
Bone. 2012 Apr;50(4):942-53. doi: 10.1016/j.bone.2011.12.026. Epub 2012 Jan 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验