Pinto Samuel K, Lamon Séverine, Stephenson Erin J, Kalanon Ming, Mikovic Jasmine, Koch Lauren G, Britton Steven L, Hawley John A, Camera Donny M
Centre for Exercise and Nutrition, Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia.
School of Exercise and Nutrition Sciences, Institute for Physical Activity and Nutrition, Deakin University Geelong, Victoria, Australia.
Am J Physiol Endocrinol Metab. 2017 Sep 1;313(3):E335-E343. doi: 10.1152/ajpendo.00043.2017. Epub 2017 May 2.
Impairments in mitochondrial function and substrate metabolism are implicated in the etiology of obesity and Type 2 diabetes. MicroRNAs (miRNAs) can degrade mRNA or repress protein translation and have been implicated in the development of such disorders. We used a contrasting rat model system of selectively bred high- (HCR) or low- (LCR) intrinsic running capacity with established differences in metabolic health to investigate the molecular mechanisms through which miRNAs regulate target proteins mediating mitochondrial function and substrate oxidation processes. Quantification of select miRNAs using the rat miFinder miRNA PCR array revealed differential expression of 15 skeletal muscles (musculus tibialis anterior) miRNAs between HCR and LCR rats (14 with higher expression in LCR; < 0.05). Ingenuity Pathway Analysis predicted these altered miRNAs to collectively target multiple proteins implicated in mitochondrial dysfunction and energy substrate metabolism. Total protein abundance of citrate synthase (CS; miR-19 target) and voltage-dependent anion channel 1 (miR-7a target) were higher in HCR compared with LCR cohorts (~57 and ~26%, respectively; < 0.05). A negative correlation was observed for miR-19a-3p and CS ( = 0.32, = 0.015) protein expression. To determine whether miR-19a-3p can regulate CS in vitro, we performed luciferase reporter and transfection assays in C2C12 myotubes. MiR-19a-3p binding to the CS untranslated region did not change luciferase reporter activity; however, miR-19a-3p transfection decreased CS protein expression (∼70%; < 0.05). The differential miRNA expression targeting proteins implicated in mitochondrial dysfunction and energy substrate metabolism may contribute to the molecular basis, mediating the divergent metabolic health profiles of LCR and HCR rats.
线粒体功能和底物代谢受损与肥胖症和2型糖尿病的病因有关。微小RNA(miRNA)可降解mRNA或抑制蛋白质翻译,并与这些疾病的发展有关。我们使用了一个对比大鼠模型系统,该系统通过选择性培育具有高(HCR)或低(LCR)内在跑步能力且代谢健康存在既定差异的大鼠,来研究miRNA调节介导线粒体功能和底物氧化过程的靶蛋白的分子机制。使用大鼠miFinder miRNA PCR阵列对选定的miRNA进行定量分析,结果显示HCR和LCR大鼠之间15种骨骼肌(胫前肌)miRNA存在差异表达(14种在LCR中表达较高;P<0.05)。 Ingenuity通路分析预测,这些改变的miRNA共同靶向多种与线粒体功能障碍和能量底物代谢有关的蛋白质。与LCR组相比,HCR组柠檬酸合酶(CS;miR-19的靶标)和电压依赖性阴离子通道1(miR-7a的靶标)的总蛋白丰度更高(分别约为57%和26%;P<0.05)。观察到miR-19a-3p与CS蛋白表达呈负相关(r = 0.32,P = 0.015)。为了确定miR-19a-3p在体外是否能调节CS,我们在C2C12肌管中进行了荧光素酶报告基因和转染实验。miR-19a-3p与CS非翻译区的结合并未改变荧光素酶报告基因活性;然而,miR-19a-3p转染降低了CS蛋白表达(约70%;P<0.05)。靶向与线粒体功能障碍和能量底物代谢有关的蛋白质的miRNA差异表达,可能有助于解释LCR和HCR大鼠不同代谢健康状况的分子基础。