Suppr超能文献

沉默调节蛋白E是一种真菌全局转录调节因子,它决定了从初级生长阶段到稳定期的转变。

Sirtuin E is a fungal global transcriptional regulator that determines the transition from the primary growth to the stationary phase.

作者信息

Itoh Eriko, Odakura Rika, Oinuma Ken-Ichi, Shimizu Motoyuki, Masuo Shunsuke, Takaya Naoki

机构信息

From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan.

From the Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan

出版信息

J Biol Chem. 2017 Jun 30;292(26):11043-11054. doi: 10.1074/jbc.M116.753772. Epub 2017 May 2.

Abstract

In response to limited nutrients, fungal cells exit the primary growth phase, enter the stationary phase, and cease proliferation. Although fundamental to microbial physiology in many environments, the regulation of this transition is poorly understood but likely involves many transcriptional regulators. These may include the sirtuins, which deacetylate acetyllysine residues of histones and epigenetically regulate global transcription. Therefore, we investigated the role of a nuclear sirtuin, sirtuin E (SirE), from the ascomycete fungus An strain with a disrupted gene (SirEΔ) accumulated more acetylated histone H3 during the stationary growth phase when was expressed at increased levels in the wild type. SirEΔ exhibited decreased mycelial autolysis, conidiophore development, sterigmatocystin biosynthesis, and production of extracellular hydrolases. Moreover, the transcription of the genes involved in these processes was also decreased, indicating that SirE is a histone deacetylase that up-regulates these activities in the stationary growth phase. Transcriptome analyses indicated that SirE repressed primary carbon and nitrogen metabolism and cell-wall synthesis. Chromatin immunoprecipitation demonstrated that SirE deacetylates acetylated Lys-9 residues in histone H3 at the gene promoters of α-1,3-glucan synthase (), glycolytic phosphofructokinase (), and glyceraldehyde 3-phosphate (), indicating that SirE represses the expression of these primary metabolic genes. In summary, these results indicate that SirE facilitates the metabolic transition from the primary growth phase to the stationary phase. Because the observed gene expression profiles in stationary phase matched those resulting from carbon starvation, SirE appears to control this metabolic transition via a mechanism associated with the starvation response.

摘要

为响应有限的营养物质,真菌细胞退出主要生长阶段,进入静止期,并停止增殖。尽管在许多环境中这一转变对微生物生理学至关重要,但对其调控的了解却很少,不过可能涉及许多转录调节因子。这些调节因子可能包括沉默调节蛋白,它们使组蛋白的乙酰赖氨酸残基去乙酰化,并在表观遗传上调节全局转录。因此,我们研究了子囊菌真菌中的一种核沉默调节蛋白——沉默调节蛋白E(SirE)的作用。在野生型中,当SirE表达水平升高时,基因被破坏的菌株(SirEΔ)在静止生长阶段积累了更多乙酰化的组蛋白H3。SirEΔ表现出菌丝自溶减少、分生孢子梗发育减少、柄曲霉素生物合成减少以及细胞外水解酶产生减少。此外,参与这些过程的基因转录也减少,这表明SirE是一种组蛋白脱乙酰酶,在静止生长阶段上调这些活性。转录组分析表明,SirE抑制初级碳和氮代谢以及细胞壁合成。染色质免疫沉淀表明,SirE使α-1,3-葡聚糖合酶()、糖酵解磷酸果糖激酶()和3-磷酸甘油醛()基因启动子处组蛋白H3中的乙酰化赖氨酸-9残基去乙酰化,这表明SirE抑制这些初级代谢基因的表达。总之,这些结果表明SirE促进了从主要生长阶段到静止阶段 的代谢转变。由于在静止期观察到的基因表达谱与碳饥饿导致的谱相匹配,SirE似乎通过与饥饿反应相关的机制控制这种代谢转变。

相似文献

2

引用本文的文献

5
Epigenetic Regulation of Fungal Secondary Metabolism.真菌次级代谢的表观遗传调控
J Fungi (Basel). 2024 Sep 13;10(9):648. doi: 10.3390/jof10090648.

本文引用的文献

7
Transcriptome changes initiated by carbon starvation in Aspergillus nidulans.氮饥饿诱导的粗糙脉孢菌转录组变化。
Microbiology (Reading). 2013 Jan;159(Pt 1):176-190. doi: 10.1099/mic.0.062935-0. Epub 2012 Nov 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验