Suppr超能文献

……中信号传播的机制

Mechanism of signal propagation in .

作者信息

Alim Karen, Andrew Natalie, Pringle Anne, Brenner Michael P

机构信息

The Kavli Institute for Bionano Science and Technology, Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;

Max Planck Institute for Dynamics and Self-Organization, 37077 Goettingen, Germany.

出版信息

Proc Natl Acad Sci U S A. 2017 May 16;114(20):5136-5141. doi: 10.1073/pnas.1618114114. Epub 2017 May 2.

Abstract

Complex behaviors are typically associated with animals, but the capacity to integrate information and function as a coordinated individual is also a ubiquitous but poorly understood feature of organisms such as slime molds and fungi. Plasmodial slime molds grow as networks and use flexible, undifferentiated body plans to forage for food. How an individual communicates across its network remains a puzzle, but has emerged as a novel model used to explore emergent dynamics. Within , cytoplasm is shuttled in a peristaltic wave driven by cross-sectional contractions of tubes. We first track 's response to a localized nutrient stimulus and observe a front of increased contraction. The front propagates with a velocity comparable to the flow-driven dispersion of particles. We build a mathematical model based on these data and in the aggregate experiments and model identify the mechanism of signal propagation across a body: The nutrient stimulus triggers the release of a signaling molecule. The molecule is advected by fluid flows but simultaneously hijacks flow generation by causing local increases in contraction amplitude as it travels. The molecule is initiating a feedback loop to enable its own movement. This mechanism explains previously puzzling phenomena, including the adaptation of the peristaltic wave to organism size and 's ability to find the shortest route between food sources. A simple feedback seems to give rise to 's complex behaviors, and the same mechanism is likely to function in the thousands of additional species with similar behaviors.

摘要

复杂行为通常与动物相关联,但整合信息并作为一个协调个体发挥功能的能力,也是黏菌和真菌等生物体普遍存在但却知之甚少的特征。多核变形虫状黏菌以网络形式生长,并利用灵活、未分化的身体结构觅食。个体如何在其网络中进行通信仍是一个谜题,但它已成为用于探索涌现动力学的一种新模型。在其内部,细胞质在由管道横截面收缩驱动的蠕动波中穿梭。我们首先追踪其对局部营养刺激的反应,并观察到收缩增加的前沿。该前沿的传播速度与颗粒的流动驱动扩散速度相当。我们基于这些数据构建了一个数学模型,并在总体实验和模型中确定了信号在整个生物体中传播的机制:营养刺激触发信号分子的释放。该分子由流体流动平流输送,但在其传播过程中,会通过引起局部收缩幅度增加,同时劫持流动的产生。该分子正在启动一个反馈回路以实现自身的移动。这种机制解释了以前令人困惑的现象,包括蠕动波对生物体大小的适应性以及其找到食物源之间最短路径的能力。一种简单的反馈似乎产生了其复杂行为,并且相同的机制可能在数千种具有类似行为的其他物种中发挥作用。

相似文献

1
Mechanism of signal propagation in .……中信号传播的机制
Proc Natl Acad Sci U S A. 2017 May 16;114(20):5136-5141. doi: 10.1073/pnas.1618114114. Epub 2017 May 2.
3
A revised model of fluid transport optimization in Physarum polycephalum.多头绒泡菌中流体运输优化的修正模型。
J Math Biol. 2017 Feb;74(3):567-581. doi: 10.1007/s00285-016-1036-y. Epub 2016 Jun 11.
6
Physarum can compute shortest paths.黏菌可以计算最短路径。
J Theor Biol. 2012 Sep 21;309:121-33. doi: 10.1016/j.jtbi.2012.06.017. Epub 2012 Jun 23.
8
Minimum-risk path finding by an adaptive amoebal network.通过自适应变形虫网络寻找最小风险路径。
Phys Rev Lett. 2007 Aug 10;99(6):068104. doi: 10.1103/PhysRevLett.99.068104.
9
Gravitational response of the slime mold Physarum.黏菌多头绒泡菌的重力反应。
Adv Space Res. 1994;14(8):21-34. doi: 10.1016/0273-1177(94)90382-4.

引用本文的文献

3
Active oscillations in microscale navigation.微尺度导航中的主动振荡。
Anim Cogn. 2023 Nov;26(6):1837-1850. doi: 10.1007/s10071-023-01819-5. Epub 2023 Sep 4.
8
Go with the flow - bulk transport by molecular motors.随波逐流——分子马达的批量运输。
J Cell Sci. 2023 Mar 1;136(5). doi: 10.1242/jcs.260300. Epub 2022 Oct 17.
9
Cell fusion through slime mould network dynamics.通过黏菌网络动态实现细胞融合。
J R Soc Interface. 2022 Apr;19(189):20220054. doi: 10.1098/rsif.2022.0054. Epub 2022 Apr 27.

本文引用的文献

1
Pruning to Increase Taylor Dispersion in Physarum polycephalum Networks.通过修剪增加多头绒泡菌网络中的泰勒色散
Phys Rev Lett. 2016 Oct 21;117(17):178103. doi: 10.1103/PhysRevLett.117.178103. Epub 2016 Oct 20.
2
The Species Problem in Myxomycetes Revisited.再探黏菌纲中的物种问题。
Protist. 2016 Aug;167(4):319-338. doi: 10.1016/j.protis.2016.05.003. Epub 2016 Jun 6.
7
Liquid transport facilitated by channels in Bacillus subtilis biofilms.枯草芽孢杆菌生物膜中通道介导的液体运输。
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):848-52. doi: 10.1073/pnas.1216376110. Epub 2012 Dec 27.
8
Physarum can compute shortest paths.黏菌可以计算最短路径。
J Theor Biol. 2012 Sep 21;309:121-33. doi: 10.1016/j.jtbi.2012.06.017. Epub 2012 Jun 23.
10
Amoeboid organism solves complex nutritional challenges.变形虫生物解决复杂的营养挑战。
Proc Natl Acad Sci U S A. 2010 Mar 9;107(10):4607-11. doi: 10.1073/pnas.0912198107. Epub 2010 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验