Institut Montpelliérain Alexander Grothendieck (IMAG), CNRS, Université de Montpellier, 2 Place Eugène Bataillon, 34095, Montpellier Cedex 5, France.
Sim and Cure, Cap Gamma, 1682 rue de la Valsière, 34790, Grabels, France.
Biomech Model Mechanobiol. 2017 Oct;16(5):1645-1657. doi: 10.1007/s10237-017-0910-x. Epub 2017 May 3.
Stretching red blood cells using optical tweezers is a way to characterize the mechanical properties of their membrane by measuring the size of the cell in the direction of the stretching (axial diameter) and perpendicularly (transverse diameter). Recently, such data have been used in numerous publications to validate solvers dedicated to the computation of red blood cell dynamics under flow. In the present study, different mechanical models are used to simulate the stretching of red blood cells by optical tweezers. Results first show that the mechanical moduli of the membranes have to be adjusted as a function of the model used. In addition, by assessing the area dilation of the cells, the axial and transverse diameters measured in optical tweezers experiments are found to be insufficient to discriminate between models relevant to red blood cells or not. At last, it is shown that other quantities such as the height or the profile of the cell should be preferred for validation purposes since they are more sensitive to the membrane model.
使用光学镊子拉伸红细胞是一种通过测量细胞在拉伸方向(轴向直径)和垂直方向(横向直径)上的大小来表征其膜机械性能的方法。最近,此类数据已在许多出版物中用于验证专门用于计算红细胞在流动下动力学的求解器。在本研究中,使用不同的力学模型来模拟光学镊子拉伸红细胞。结果首先表明,必须根据所使用的模型来调整膜的力学模量。此外,通过评估细胞的面积膨胀,发现光学镊子实验中测量的细胞轴向和横向直径不足以区分与红细胞相关或不相关的模型。最后,结果表明,为了验证目的,应该选择其他量,如细胞的高度或轮廓,因为它们对膜模型更敏感。