Lewis Sigler Institute for Integrative Genomics and Department of Chemistry, Princeton University , Washington Road, Princeton, New Jersey 08544, United States.
Anal Chem. 2017 Jun 6;89(11):5940-5948. doi: 10.1021/acs.analchem.7b00396. Epub 2017 May 18.
Orbitraps are high-resolution ion-trap mass spectrometers that are widely used in metabolomics. While the mass accuracy and resolving power of orbitraps have been extensively documented, their spectral accuracy, i.e., accuracy in measuring the abundances of isotopic peaks, remains less studied. In analyzing spectra of unlabeled metabolites, we discovered a systematic under representation of heavier natural isotopic species, especially for high molecular weight metabolites (∼20% under-measurement of [M + 1]/[M + 0] ratio at m/z 600). We hypothesize that these discrepancies arise for metabolites far from the lower limit of the mass scan range, due to the weaker containment in the C-trap that results in suboptimal trajectories inside the Orbitrap analyzer. Consistent with this, spectral fidelity was restored by dividing the mass scan range (initially 75 m/z to 1000 m/z) into two scan events, one for lower molecular weight and the other for higher molecular weight metabolites. Having thus obtained accurate mass spectra at high resolution, we found that natural isotope correction for high-resolution labeling data requires more sophisticated algorithms than typically employed: the correction algorithm must take into account whether isotopologues with the same nominal mass are resolved. We present an algorithm and associated open-source code, named AccuCor, for this purpose. Together, these improvements in instrument parameters and natural isotope correction enable more accurate measurement of metabolite labeling and thus metabolic flux.
轨道阱是高分辨率离子阱质谱仪,广泛应用于代谢组学研究。虽然轨道阱的质量精度和分辨率已经得到了广泛的证明,但它们的光谱精度,即测量同位素峰丰度的准确性,仍然研究较少。在分析未标记代谢物的光谱时,我们发现较重的天然同位素物种存在系统的表示不足,特别是对于高分子量代谢物(在 m/z 600 处,[M+1]/[M+0] 比值的测量值低约 20%)。我们假设这些差异是由于远离质量扫描范围下限的代谢物引起的,由于 C 阱的容纳能力较弱,导致轨道阱分析仪内的轨迹不理想。一致的是,通过将质量扫描范围(最初为 75 m/z 至 1000 m/z)分为两个扫描事件,一个用于低分子量代谢物,另一个用于高分子量代谢物,从而恢复了光谱保真度。在获得高分辨率的精确质谱后,我们发现,对于高分辨率标记数据的天然同位素校正需要比通常使用的更复杂的算法:校正算法必须考虑是否具有相同名义质量的同量异位素是可分辨的。为此,我们提出了一种算法和相关的开源代码,命名为 AccuCor。这些仪器参数和天然同位素校正方面的改进共同实现了对代谢物标记和代谢通量更准确的测量。