Suppr超能文献

无标签定量在离子淌度增强型数据非依赖性采集蛋白质组学中的应用。

Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics.

机构信息

Institute for Immunology, University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.

Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.

出版信息

Nat Protoc. 2016 Apr;11(4):795-812. doi: 10.1038/nprot.2016.042. Epub 2016 Mar 24.

Abstract

Unbiased data-independent acquisition (DIA) strategies have gained increased popularity in the field of quantitative proteomics. The integration of ion mobility separation (IMS) into DIA workflows provides an additional dimension of separation to liquid chromatography-mass spectrometry (LC-MS), and it increases the achievable analytical depth of DIA approaches. Here we provide a detailed protocol for a label-free quantitative proteomics workflow based on ion mobility-enhanced DIA, which synchronizes precursor ion drift times with collision energies to improve precursor fragmentation efficiency. The protocol comprises a detailed description of all major steps including instrument setup, filter-aided sample preparation, LC-IMS-MS analysis and data processing. Our protocol can handle proteome samples of any complexity, and it enables a highly reproducible and accurate precursor intensity-based label-free quantification of up to 5,600 proteins across multiple runs in complete cellular lysates. Depending on the number of samples to be analyzed, the protocol takes a minimum of 3 d to complete from proteolytic digestion to data evaluation.

摘要

无偏性数据非依赖性采集(DIA)策略在定量蛋白质组学领域得到了越来越多的关注。将离子淌度分离(IMS)纳入 DIA 工作流程为液相色谱-质谱(LC-MS)提供了额外的分离维度,并提高了 DIA 方法的可实现分析深度。本文提供了一种基于离子淌度增强 DIA 的无标记定量蛋白质组学工作流程的详细方案,该方案将前体离子漂移时间与碰撞能同步,以提高前体碎片化效率。该方案详细描述了所有主要步骤,包括仪器设置、过滤辅助样品制备、LC-IMS-MS 分析和数据处理。我们的方案可以处理任何复杂程度的蛋白质组样品,并且能够在完整的细胞裂解物中进行多达 5600 种蛋白质的高度重现性和精确的基于前体强度的无标记定量,在多个运行中均可实现。根据要分析的样品数量,从蛋白水解消化到数据评估,该方案至少需要 3 天才能完成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验