Bose Jayakumar, Munns Rana, Shabala Sergey, Gilliham Matthew, Pogson Barry, Tyerman Stephen D
Australian Research Council Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, PMB1, Glen Osmond, SA 5064, Australia.
Australian Research Council Centre of Excellence in Plant Energy Biology, and School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
J Exp Bot. 2017 Jun 1;68(12):3129-3143. doi: 10.1093/jxb/erx142.
Salt stress impacts multiple aspects of plant metabolism and physiology. For instance it inhibits photosynthesis through stomatal limitation, causes excessive accumulation of sodium and chloride in chloroplasts, and disturbs chloroplast potassium homeostasis. Most research on salt stress has focused primarily on cytosolic ion homeostasis with few studies of how salt stress affects chloroplast ion homeostasis. This review asks the question whether membrane-transport processes and ionic relations are differentially regulated between glycophyte and halophyte chloroplasts and whether this contributes to the superior salt tolerance of halophytes. The available literature indicates that halophytes can overcome stomatal limitation by switching to CO2 concentrating mechanisms and increasing the number of chloroplasts per cell under saline conditions. Furthermore, salt entry into the chloroplast stroma may be critical for grana formation and photosystem II activity in halophytes but not in glycophytes. Salt also inhibits some stromal enzymes (e.g. fructose-1,6-bisphosphatase) to a lesser extent in halophyte species. Halophytes accumulate more chloride in chloroplasts than glycophytes and appear to use sodium in functional roles. We propose the molecular identities of candidate transporters that move sodium, chloride and potassium across chloroplast membranes and discuss how their operation may regulate photochemistry and photosystem I and II activity in chloroplasts.
盐胁迫会影响植物代谢和生理的多个方面。例如,它通过气孔限制抑制光合作用,导致叶绿体中钠和氯的过度积累,并扰乱叶绿体钾稳态。大多数关于盐胁迫的研究主要集中在细胞质离子稳态,很少有研究关注盐胁迫如何影响叶绿体离子稳态。本综述提出了这样一个问题:膜运输过程和离子关系在甜土植物和盐生植物的叶绿体之间是否受到不同的调节,以及这是否有助于盐生植物具有更强的耐盐性。现有文献表明,盐生植物可以通过转向二氧化碳浓缩机制并在盐胁迫条件下增加每个细胞中的叶绿体数量来克服气孔限制。此外,盐进入叶绿体基质可能对盐生植物的基粒形成和光系统II活性至关重要,但对甜土植物并非如此。盐对盐生植物中一些基质酶(如1,6-二磷酸果糖酶)的抑制作用也较小。盐生植物在叶绿体中积累的氯比甜土植物更多,并且似乎将钠用于功能性作用。我们提出了跨叶绿体膜运输钠、氯和钾的候选转运蛋白的分子特性,并讨论了它们的作用方式如何调节叶绿体中的光化学以及光系统I和II的活性。