Suppr超能文献

用于黄病毒感染的广谱药物:登革热、寨卡病毒及其他。

Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond.

作者信息

Boldescu Veaceslav, Behnam Mira A M, Vasilakis Nikos, Klein Christian D

机构信息

Medicinal Chemistry, Institute of Pharmacy and Molecular Biotechnology IPMB, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany.

Laboratory of Organic Synthesis and Biopharmaceuticals, Institute of Chemistry of the Academy of Sciences of Moldova, Academiei 3, 2028 Chisinau, Moldova.

出版信息

Nat Rev Drug Discov. 2017 Aug;16(8):565-586. doi: 10.1038/nrd.2017.33. Epub 2017 May 5.

Abstract

Infections with flaviviruses, such as dengue, West Nile virus and the recently re-emerging Zika virus, are an increasing and probably lasting global risk. This Review summarizes and comments on the opportunities for broad-spectrum agents that are active against multiple flaviviruses. Broad-spectrum activity is particularly desirable to prepare for the next flaviviral epidemic, which could emerge from as-yet unknown or neglected viruses. Potential molecular targets for broad-spectrum antiflaviviral compounds include viral proteins, such as the viral protease or polymerase, and host targets that are exploited by these viruses during entry and replication, including α-glucosidase and proteins involved in nucleoside biosynthesis. Numerous compounds with broad-spectrum antiviral activity have already been identified by target-specific or phenotypic assays. For other compounds, broad-spectrum activity can be anticipated because of their mode of action and molecular targets.

摘要

黄病毒感染,如登革热、西尼罗河病毒和最近重新出现的寨卡病毒感染,是一个日益增加且可能持续存在的全球风险。本综述总结并评论了针对多种黄病毒具有活性的广谱药物的研发机会。鉴于下一次黄病毒疫情可能由未知或被忽视的病毒引发,广谱活性尤为重要。广谱抗黄病毒化合物的潜在分子靶点包括病毒蛋白,如病毒蛋白酶或聚合酶,以及这些病毒在进入和复制过程中利用的宿主靶点,包括α-葡萄糖苷酶和参与核苷生物合成的蛋白质。通过靶点特异性或表型分析已经鉴定出许多具有广谱抗病毒活性的化合物。对于其他化合物,由于其作用方式和分子靶点,也可预期具有广谱活性。

相似文献

1
Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond.
Nat Rev Drug Discov. 2017 Aug;16(8):565-586. doi: 10.1038/nrd.2017.33. Epub 2017 May 5.
2
Small-Molecule Inhibitor of Flaviviral NS3-NS5 Interaction with Broad-Spectrum Activity and Efficacy .
mBio. 2023 Feb 28;14(1):e0309722. doi: 10.1128/mbio.03097-22. Epub 2023 Jan 9.
3
Inhibition of Flaviviruses by Targeting a Conserved Pocket on the Viral Envelope Protein.
Cell Chem Biol. 2018 Aug 16;25(8):1006-1016.e8. doi: 10.1016/j.chembiol.2018.05.011. Epub 2018 Jun 21.
5
Broad-Spectrum Flavivirus Inhibitors: a Medicinal Chemistry Point of View.
ChemMedChem. 2020 Dec 15;15(24):2391-2419. doi: 10.1002/cmdc.202000464. Epub 2020 Oct 22.
7
Identification of Broad-Spectrum Antiviral Compounds by Targeting Viral Entry.
Viruses. 2019 Feb 20;11(2):176. doi: 10.3390/v11020176.
10
Mosquito-Borne Flaviviruses and Current Therapeutic Advances.
Viruses. 2022 Jun 5;14(6):1226. doi: 10.3390/v14061226.

引用本文的文献

2
Exploration of 4'-fluoro fleximer nucleoside analogues as potential broad-spectrum antiviral agents.
Bioorg Med Chem. 2025 Oct 1;128:118243. doi: 10.1016/j.bmc.2025.118243. Epub 2025 May 20.
3
Arboviruses: the hidden danger of the tropics.
Arch Virol. 2025 May 26;170(7):140. doi: 10.1007/s00705-025-06314-5.
4
Glucose-regulated protein 94 (Grp94/gp96) in viral pathogenesis: Insights into its role and therapeutic potentials.
Eur J Med Chem. 2025 Aug 5;292:117713. doi: 10.1016/j.ejmech.2025.117713. Epub 2025 Apr 30.
6
The Antiviral Activity of Polyphenols.
Mol Nutr Food Res. 2025 Aug;69(15):e70042. doi: 10.1002/mnfr.70042. Epub 2025 Apr 1.
7
Dengue Virus Inhibitors as Potential Broad-Spectrum Flavivirus Inhibitors.
Pharmaceuticals (Basel). 2025 Feb 20;18(3):283. doi: 10.3390/ph18030283.
8
Druggable genome screens identify SPP as an antiviral host target for multiple flaviviruses.
Proc Natl Acad Sci U S A. 2025 Feb 25;122(8):e2421573122. doi: 10.1073/pnas.2421573122. Epub 2025 Feb 19.
9
Characterization of Novel Plantaricin-Derived Antiviral Peptides Against Flaviviruses.
Int J Mol Sci. 2025 Jan 25;26(3):1038. doi: 10.3390/ijms26031038.

本文引用的文献

1
Peptide-Boronic Acid Inhibitors of Flaviviral Proteases: Medicinal Chemistry and Structural Biology.
J Med Chem. 2017 Jan 12;60(1):511-516. doi: 10.1021/acs.jmedchem.6b01021. Epub 2016 Dec 14.
2
Dengue vaccine: local decisions, global consequences.
Bull World Health Organ. 2016 Nov 1;94(11):850-855. doi: 10.2471/BLT.15.168765. Epub 2016 Sep 7.
3
Benefits and risks of the Sanofi-Pasteur dengue vaccine: Modeling optimal deployment.
Science. 2016 Sep 2;353(6303):1033-1036. doi: 10.1126/science.aaf9590.
5
Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses.
J Virol. 2016 Oct 14;90(21):9683-9692. doi: 10.1128/JVI.01347-16. Print 2016 Nov 1.
7
Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling.
PLoS Pathog. 2016 Aug 8;12(8):e1005737. doi: 10.1371/journal.ppat.1005737. eCollection 2016 Aug.
8
A Screen of FDA-Approved Drugs for Inhibitors of Zika Virus Infection.
Cell Host Microbe. 2016 Aug 10;20(2):259-70. doi: 10.1016/j.chom.2016.07.004. Epub 2016 Jul 28.
9
Structure-activity relationships of nucleoside analogues for inhibition of tick-borne encephalitis virus.
Antiviral Res. 2016 Sep;133:119-29. doi: 10.1016/j.antiviral.2016.07.018. Epub 2016 Jul 28.
10
Interferon-Induced Spermidine-Spermine Acetyltransferase and Polyamine Depletion Restrict Zika and Chikungunya Viruses.
Cell Host Microbe. 2016 Aug 10;20(2):167-77. doi: 10.1016/j.chom.2016.06.011. Epub 2016 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验