International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia.
Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia.
Chemistry. 2021 Jul 7;27(38):9727-9736. doi: 10.1002/chem.202100212. Epub 2021 May 21.
NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the C and N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of N nuclei. Although large sensitivity gains are enabled by hyperpolarization, N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.
NMR 极化技术将核自旋极化增强了几个数量级,从而实现了相应的灵敏度增益。这种巨大的灵敏度增益使得新的应用成为可能,从使用高分辨率 NMR 光谱研究小分子到体内实时代谢成像。有几种极化技术可用于对大量核自旋进行极化,尽管由于其在生化途径中的广泛应用,生物相容性试剂的 C 和 N 位点是关键目标。此外,它们的长 T 允许极化态保持长达数十分钟。通过可逆交换进行的信号放大 (SABRE) 是一种低成本、超快的极化技术,已被证明在 N 核的极化中具有多功能性。尽管极化可以实现大的灵敏度增益,但 N 的天然丰度仅约为 0.4%,因此需要对要极化的分子进行同位素标记,以充分利用极化态。在此,我们描述了制备 N 标记化合物的一些进展,重点是通过从仲氢自发极化转移,在微特斯拉磁场中使用这些化合物进行 SABRE 极化。当然,这些原则也可以应用于使用动态核极化和其他技术对这些新兴造影剂进行极化。