Suppr超能文献

用于 N 标记的高极化杂环分子成像剂的合成方法,用于在微特斯拉磁场中通过可逆交换实现 N NMR 信号放大。

Synthetic Approaches for N-Labeled Hyperpolarized Heterocyclic Molecular Imaging Agents for N NMR Signal Amplification by Reversible Exchange in Microtesla Magnetic Fields.

机构信息

International Tomography Center, SB RAS, Institutskaya St. 3A, 630090, Novosibirsk, Russia.

Department of Natural Sciences, Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia.

出版信息

Chemistry. 2021 Jul 7;27(38):9727-9736. doi: 10.1002/chem.202100212. Epub 2021 May 21.

Abstract

NMR hyperpolarization techniques enhance nuclear spin polarization by several orders of magnitude resulting in corresponding sensitivity gains. This enormous sensitivity gain enables new applications ranging from studies of small molecules by using high-resolution NMR spectroscopy to real-time metabolic imaging in vivo. Several hyperpolarization techniques exist for hyperpolarization of a large repertoire of nuclear spins, although the C and N sites of biocompatible agents are the key targets due to their widespread use in biochemical pathways. Moreover, their long T allows hyperpolarized states to be retained for up to tens of minutes. Signal amplification by reversible exchange (SABRE) is a low-cost and ultrafast hyperpolarization technique that has been shown to be versatile for the hyperpolarization of N nuclei. Although large sensitivity gains are enabled by hyperpolarization, N natural abundance is only ∼0.4 %, so isotopic labeling of the molecules to be hyperpolarized is required in order to take full advantage of the hyperpolarized state. Herein, we describe selected advances in the preparation of N-labeled compounds with the primary emphasis on using these compounds for SABRE polarization in microtesla magnetic fields through spontaneous polarization transfer from parahydrogen. Also, these principles can certainly be applied for hyperpolarization of these emerging contrast agents using dynamic nuclear polarization and other techniques.

摘要

NMR 极化技术将核自旋极化增强了几个数量级,从而实现了相应的灵敏度增益。这种巨大的灵敏度增益使得新的应用成为可能,从使用高分辨率 NMR 光谱研究小分子到体内实时代谢成像。有几种极化技术可用于对大量核自旋进行极化,尽管由于其在生化途径中的广泛应用,生物相容性试剂的 C 和 N 位点是关键目标。此外,它们的长 T 允许极化态保持长达数十分钟。通过可逆交换进行的信号放大 (SABRE) 是一种低成本、超快的极化技术,已被证明在 N 核的极化中具有多功能性。尽管极化可以实现大的灵敏度增益,但 N 的天然丰度仅约为 0.4%,因此需要对要极化的分子进行同位素标记,以充分利用极化态。在此,我们描述了制备 N 标记化合物的一些进展,重点是通过从仲氢自发极化转移,在微特斯拉磁场中使用这些化合物进行 SABRE 极化。当然,这些原则也可以应用于使用动态核极化和其他技术对这些新兴造影剂进行极化。

相似文献

3
N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH.使用SABRE-SHEATH通过可逆交换实现N超极化
J Phys Chem C Nanomater Interfaces. 2015 Apr 23;119(16):8786-8797. doi: 10.1021/acs.jpcc.5b01799. Epub 2015 Mar 30.
6
Hyperpolarization of common antifungal agents with SABRE.利用 SABRE 实现常见抗真菌药物的超极化。
Magn Reson Chem. 2021 Dec;59(12):1225-1235. doi: 10.1002/mrc.5187. Epub 2021 Jun 20.

引用本文的文献

4
Nitrogen atom insertion into indenes to access isoquinolines.通过在茚中插入氮原子来合成异喹啉。
Chem Sci. 2023 Feb 23;14(11):2954-2959. doi: 10.1039/d2sc06952k. eCollection 2023 Mar 15.
5
Spin Hyperpolarization in Modern Magnetic Resonance.自旋超极化在现代磁共振中的应用。
Chem Rev. 2023 Feb 22;123(4):1417-1551. doi: 10.1021/acs.chemrev.2c00534. Epub 2023 Jan 26.

本文引用的文献

5
Rational ligand choice extends the SABRE substrate scope.合理的配体选择扩展了 SABRE 底物范围。
Chem Commun (Camb). 2020 Aug 21;56(65):9336-9339. doi: 10.1039/d0cc01330g. Epub 2020 Jul 16.
9
F Hyperpolarization of N-3-F-Pyridine Via Signal Amplification by Reversible Exchange.通过可逆交换的信号放大实现N-3-氟吡啶的超极化
J Phys Chem C Nanomater Interfaces. 2018 Oct 11;122(40):23002-23010. doi: 10.1021/acs.jpcc.8b06654. Epub 2018 Sep 18.
10
Quasi-Resonance Fluorine-19 Signal Amplification by Reversible Exchange.通过可逆交换实现的准共振氟-19信号放大
J Phys Chem Lett. 2019 Aug 1;10(15):4229-4236. doi: 10.1021/acs.jpclett.9b01505. Epub 2019 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验