Gao Lin, González-Rodríguez Patricia, Ortega-Sáenz Patricia, López-Barneo José
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain.
Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain; Departamento de Fisiología Médica y Biofísica, Facultad de Medicina, Universidad de Sevilla, Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Seville, Spain.
Redox Biol. 2017 Aug;12:908-915. doi: 10.1016/j.redox.2017.04.033. Epub 2017 Apr 26.
Acute oxygen (O) sensing is essential for individuals to survive under hypoxic conditions. The carotid body (CB) is the main peripheral chemoreceptor, which contains excitable and O-sensitive glomus cells with O-regulated ion channels. Upon exposure to acute hypoxia, inhibition of K channels is the signal that triggers cell depolarization, transmitter release and activation of sensory fibers that stimulate the brainstem respiratory center to produce hyperventilation. The molecular mechanisms underlying O sensing by glomus cells have, however, remained elusive. Here we discuss recent data demonstrating that ablation of mitochondrial Ndufs2 gene selectively abolishes sensitivity of glomus cells to hypoxia, maintaining responsiveness to hypercapnia or hypoglycemia. These data suggest that reactive oxygen species and NADH generated in mitochondrial complex I during hypoxia are signaling molecules that modulate membrane K channels. We propose that the structural substrates for acute O sensing in CB glomus cells are "O-sensing microdomains" formed by mitochondria and neighboring K channels in the plasma membrane.
急性氧(O)感知对于个体在缺氧条件下生存至关重要。颈动脉体(CB)是主要的外周化学感受器,它包含可兴奋且对氧敏感的球细胞,这些球细胞具有受氧调节的离子通道。暴露于急性缺氧时,钾通道的抑制是触发细胞去极化、递质释放以及刺激脑干呼吸中枢产生过度通气的感觉纤维激活的信号。然而,球细胞进行氧感知的分子机制仍不清楚。在此我们讨论近期的数据,这些数据表明线粒体Ndufs2基因的缺失选择性地消除了球细胞对缺氧的敏感性,同时维持了对高碳酸血症或低血糖的反应性。这些数据提示,缺氧期间线粒体复合体I中产生的活性氧和NADH是调节膜钾通道的信号分子。我们提出,CB球细胞中急性氧感知的结构基础是由线粒体和质膜中相邻钾通道形成的“氧感知微区”。