Suppr超能文献

用于快速泵衰减和加速高血糖反应以治疗1型糖尿病的人工胰腺的MPC设计

MPC Design for Rapid Pump-Attenuation and Expedited Hyperglycemia Response to Treat T1DM with an Artificial Pancreas.

作者信息

Gondhalekar Ravi, Dassau Eyal, Doyle Francis J

机构信息

Department of Chemical Engineering, University of California Santa Barbara (UCSB), USA.

出版信息

Proc Am Control Conf. 2014 Jun;2014:4224-4230. doi: 10.1109/ACC.2014.6859247. Epub 2014 Jul 21.

Abstract

The design of a Model Predictive Control (MPC) strategy for the closed-loop operation of an Artificial Pancreas (AP) for treating Type 1 Diabetes Mellitus (T1DM) is considered in this paper. The contribution of this paper is to propose two changes to the usual structure of the MPC problems typically considered for control of an AP. The first proposed change is to replace the symmetric, quadratic input cost function with an asymmetric, quadratic function, allowing negative control inputs to be penalized less than positive ones. This facilitates rapid pump-suspensions in response to predicted hypoglycemia, while simultaneously permitting the design of a conservative response to hyperglycemia. The second proposed change is to penalize the velocity of the predicted glucose level, where this velocity penalty is based on a cost function that is again asymmetric, but additionally state-dependent. This facilitates the accelerated response to acute, persistent hyperglycemic events, e.g., as induced by unannounced meals. The novel functionality is demonstrated by numerical examples, and the efficacy of the proposed MPC strategy verified using the University of Padova/Virginia metabolic simulator.

摘要

本文考虑为治疗1型糖尿病(T1DM)的人工胰腺(AP)闭环操作设计一种模型预测控制(MPC)策略。本文的贡献在于对通常用于AP控制的MPC问题的常规结构提出了两处更改。第一个提出的更改是用非对称二次函数取代对称二次输入成本函数,使得负控制输入的惩罚小于正控制输入。这有助于响应预测的低血糖时快速暂停泵,同时允许设计对高血糖的保守响应。第二个提出的更改是对预测血糖水平的变化率进行惩罚,其中这种变化率惩罚基于一个同样非对称但还依赖于状态的成本函数。这有助于对急性、持续性高血糖事件(例如由未宣布的进食引起的)加快响应。通过数值示例展示了这种新功能,并使用帕多瓦大学/弗吉尼亚代谢模拟器验证了所提出的MPC策略的有效性。

相似文献

1
MPC Design for Rapid Pump-Attenuation and Expedited Hyperglycemia Response to Treat T1DM with an Artificial Pancreas.
Proc Am Control Conf. 2014 Jun;2014:4224-4230. doi: 10.1109/ACC.2014.6859247. Epub 2014 Jul 21.
2
Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM.
Proc Am Control Conf. 2015 Jul;2015:1635-1640. doi: 10.1109/ACC.2015.7170967. Epub 2015 Jul 30.
3
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.
4
Adaptive Zone Model Predictive Control of Artificial Pancreas Based on Glucose- and Velocity-Dependent Control Penalties.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1045-1054. doi: 10.1109/TBME.2018.2866392. Epub 2018 Aug 21.
5
Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance.
Automatica (Oxf). 2018 May;91:105-117. doi: 10.1016/j.automatica.2018.01.025. Epub 2018 Mar 20.
6
Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes.
Automatica (Oxf). 2016 Sep;71:237-246. doi: 10.1016/j.automatica.2016.04.015. Epub 2016 Jun 1.
7
Embedded Model Predictive Control for a Wearable Artificial Pancreas.
IEEE Trans Control Syst Technol. 2020 Nov;28(6):2600-2607. doi: 10.1109/tcst.2019.2939122. Epub 2019 Sep 18.
8
Incorporating Prior Information in Adaptive Model Predictive Control for Multivariable Artificial Pancreas Systems.
J Diabetes Sci Technol. 2022 Jan;16(1):19-28. doi: 10.1177/19322968211059149. Epub 2021 Dec 3.
9
A closed-loop artificial pancreas based on risk management.
J Diabetes Sci Technol. 2011 Mar 1;5(2):368-79. doi: 10.1177/193229681100500226.
10
Tackling problem nonlinearities & delays via asymmetric, state-dependent objective costs in MPC of an artificial pancreas.
IFAC Pap OnLine. 2015;48(23):154-159. doi: 10.1016/j.ifacol.2015.11.276. Epub 2015 Dec 17.

引用本文的文献

1
Tackling problem nonlinearities & delays via asymmetric, state-dependent objective costs in MPC of an artificial pancreas.
IFAC Pap OnLine. 2015;48(23):154-159. doi: 10.1016/j.ifacol.2015.11.276. Epub 2015 Dec 17.
2
Velocity-weighting & velocity-penalty MPC of an artificial pancreas: Improved safety & performance.
Automatica (Oxf). 2018 May;91:105-117. doi: 10.1016/j.automatica.2018.01.025. Epub 2018 Mar 20.
3
An Enhanced Model Predictive Control for the Artificial Pancreas Using a Confidence Index Based on Residual Analysis of Past Predictions.
J Diabetes Sci Technol. 2017 May;11(3):537-544. doi: 10.1177/1932296816680632. Epub 2016 Dec 1.
4
State Estimation with Sensor Recalibrations and Asynchronous Measurements for MPC of an Artificial Pancreas to Treat T1DM.
Proc IFAC World Congress. 2014 Aug;47(3):224-230. doi: 10.3182/20140824-6-ZA-1003.01085.
5
Velocity-weighting to prevent controller-induced hypoglycemia in MPC of an artificial pancreas to treat T1DM.
Proc Am Control Conf. 2015 Jul;2015:1635-1640. doi: 10.1109/ACC.2015.7170967. Epub 2015 Jul 30.
6
Design of an Artificial Pancreas using Zone Model Predictive Control with a Moving Horizon State Estimator.
Proc IEEE Conf Decis Control. 2014 Dec;2014:6975-6980. doi: 10.1109/CDC.2014.7040485. Epub 2015 Feb 12.
7
Moving-horizon-like state estimation via continuous glucose monitor feedback in MPC of an artificial pancreas for type 1 diabetes.
Proc IEEE Conf Decis Control. 2014 Dec;2014:310-315. doi: 10.1109/CDC.2014.7039399. Epub 2015 Feb 12.
8
Outpatient Closed-Loop Control with Unannounced Moderate Exercise in Adolescents Using Zone Model Predictive Control.
Diabetes Technol Ther. 2017 Jun;19(6):331-339. doi: 10.1089/dia.2016.0399. Epub 2017 May 1.
9
Periodic zone-MPC with asymmetric costs for outpatient-ready safety of an artificial pancreas to treat type 1 diabetes.
Automatica (Oxf). 2016 Sep;71:237-246. doi: 10.1016/j.automatica.2016.04.015. Epub 2016 Jun 1.
10
Randomized Crossover Comparison of Personalized MPC and PID Control Algorithms for the Artificial Pancreas.
Diabetes Care. 2016 Jul;39(7):1135-42. doi: 10.2337/dc15-2344. Epub 2016 Jun 11.

本文引用的文献

1
Closed-loop artificial pancreas systems: engineering the algorithms.
Diabetes Care. 2014;37(5):1191-7. doi: 10.2337/dc13-2108.
2
Periodic-zone model predictive control for diurnal closed-loop operation of an artificial pancreas.
J Diabetes Sci Technol. 2013 Nov 1;7(6):1446-60. doi: 10.1177/193229681300700605.
3
Multivariable adaptive closed-loop control of an artificial pancreas without meal and activity announcement.
Diabetes Technol Ther. 2013 May;15(5):386-400. doi: 10.1089/dia.2012.0283. Epub 2013 Apr 1.
4
Design of the health monitoring system for the artificial pancreas: low glucose prediction module.
J Diabetes Sci Technol. 2012 Nov 1;6(6):1345-54. doi: 10.1177/193229681200600613.
6
Control-relevant models for glucose control using a priori patient characteristics.
IEEE Trans Biomed Eng. 2012 Jul;59(7):1839-49. doi: 10.1109/TBME.2011.2176939. Epub 2011 Nov 22.
7
Clinical hurdles and possible solutions in the implementation of closed-loop control in type 1 diabetes mellitus.
J Diabetes Sci Technol. 2011 Sep 1;5(5):1283-6. doi: 10.1177/193229681100500537.
8
Artificial pancreas: past, present, future.
Diabetes. 2011 Nov;60(11):2672-82. doi: 10.2337/db11-0654.
9
Diabetes: Models, Signals, and Control.
IEEE Rev Biomed Eng. 2009 Jan 1;2:54-96. doi: 10.1109/RBME.2009.2036073.
10
Zone model predictive control: a strategy to minimize hyper- and hypoglycemic events.
J Diabetes Sci Technol. 2010 Jul 1;4(4):961-75. doi: 10.1177/193229681000400428.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验