Pan Keyao, Bricker William P, Ratanalert Sakul, Bathe Mark
Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Nucleic Acids Res. 2017 Jun 20;45(11):6284-6298. doi: 10.1093/nar/gkx378.
Synthetic DNA is a highly programmable nanoscale material that can be designed to self-assemble into 3D structures that are fully determined by underlying Watson-Crick base pairing. The double crossover (DX) design motif has demonstrated versatility in synthesizing arbitrary DNA nanoparticles on the 5-100 nm scale for diverse applications in biotechnology. Prior computational investigations of these assemblies include all-atom and coarse-grained modeling, but modeling their conformational dynamics remains challenging due to their long relaxation times and associated computational cost. We apply all-atom molecular dynamics and coarse-grained finite element modeling to DX-based nanoparticles to elucidate their fine-scale and global conformational structure and dynamics. We use our coarse-grained model with a set of secondary structural motifs to predict the equilibrium solution structures of 45 DX-based DNA origami nanoparticles including a tetrahedron, octahedron, icosahedron, cuboctahedron and reinforced cube. Coarse-grained models are compared with 3D cryo-electron microscopy density maps for these five DNA nanoparticles and with all-atom molecular dynamics simulations for the tetrahedron and octahedron. Our results elucidate non-intuitive atomic-level structural details of DX-based DNA nanoparticles, and offer a general framework for efficient computational prediction of global and local structural and mechanical properties of DX-based assemblies that are inaccessible to all-atom based models alone.
合成DNA是一种高度可编程的纳米级材料,可设计成自组装成三维结构,这些结构完全由潜在的沃森-克里克碱基配对决定。双交叉(DX)设计基序已证明在合成5-100纳米尺度的任意DNA纳米颗粒以用于生物技术的各种应用方面具有通用性。此前对这些组装体的计算研究包括全原子和粗粒度建模,但由于其长弛豫时间和相关的计算成本,对其构象动力学进行建模仍然具有挑战性。我们将全原子分子动力学和粗粒度有限元建模应用于基于DX的纳米颗粒,以阐明其精细尺度和全局构象结构及动力学。我们使用带有一组二级结构基序的粗粒度模型来预测45种基于DX的DNA折纸纳米颗粒的平衡溶液结构,包括四面体、八面体、二十面体、立方八面体和加固立方体。将粗粒度模型与这五种DNA纳米颗粒的三维冷冻电子显微镜密度图以及四面体和八面体的全原子分子动力学模拟进行比较。我们的结果阐明了基于DX的DNA纳米颗粒非直观的原子级结构细节,并为高效计算预测基于DX的组装体的全局和局部结构及力学性能提供了一个通用框架,而仅基于全原子的模型无法获得这些性能。