Suppr超能文献

用等变神经网络预测准确的从头算 DNA 电子密度。

Predicting accurate ab initio DNA electron densities with equivariant neural networks.

机构信息

Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, New Mexico.

Center for Computing Research, Sandia National Laboratories, Albuquerque, New Mexico.

出版信息

Biophys J. 2022 Oct 18;121(20):3883-3895. doi: 10.1016/j.bpj.2022.08.045. Epub 2022 Sep 3.

Abstract

One of the fundamental limitations of accurately modeling biomolecules like DNA is the inability to perform quantum chemistry calculations on large molecular structures. We present a machine learning model based on an equivariant Euclidean neural network framework to obtain accurate ab initio electron densities for arbitrary DNA structures that are much too large for conventional quantum methods. The model is trained on representative B-DNA basepair steps that capture both base pairing and base stacking interactions. The model produces accurate electron densities for arbitrary B-DNA structures with typical errors of less than 1%. Crucially, the error does not increase with system size, which suggests that the model can extrapolate to large DNA structures with negligible loss of accuracy. The model also generalizes reasonably to other DNA structural motifs such as the A- and Z-DNA forms, despite being trained on only B-DNA configurations. The model is used to calculate electron densities of several large-scale DNA structures, and we show that the computational scaling for this model is essentially linear. We also show that this machine learning electron density model can be used to calculate accurate electrostatic potentials for DNA. These electrostatic potentials produce more accurate results compared with classical force fields and do not show the usual deficiencies at short range.

摘要

准确模拟 DNA 等生物分子的一个基本限制是无法对大型分子结构进行量子化学计算。我们提出了一个基于等变欧式神经网络框架的机器学习模型,以获得对于传统量子方法而言过大的任意 DNA 结构的精确从头算电子密度。该模型在代表性的 B-DNA 碱基对步骤上进行训练,这些步骤捕捉了碱基对和碱基堆积相互作用。该模型为任意 B-DNA 结构生成精确的电子密度,典型误差小于 1%。至关重要的是,误差不会随系统大小而增加,这表明该模型可以外推到具有可忽略精度损失的大型 DNA 结构。该模型也相当合理地推广到其他 DNA 结构基序,例如 A 和 Z-DNA 形式,尽管仅在 B-DNA 配置上进行了训练。该模型用于计算几个大规模 DNA 结构的电子密度,我们表明该模型的计算缩放基本上是线性的。我们还表明,这种机器学习电子密度模型可用于计算 DNA 的精确静电势。与经典力场相比,这些静电势产生更准确的结果,并且不会在短程显示出常见的缺陷。

相似文献

1
Predicting accurate ab initio DNA electron densities with equivariant neural networks.
Biophys J. 2022 Oct 18;121(20):3883-3895. doi: 10.1016/j.bpj.2022.08.045. Epub 2022 Sep 3.
2
Building an ab initio solvated DNA model using Euclidean neural networks.
PLoS One. 2024 Feb 15;19(2):e0297502. doi: 10.1371/journal.pone.0297502. eCollection 2024.
3
Analytical Model of Electron Density and Its Machine Learning Inference.
J Chem Inf Model. 2020 Aug 24;60(8):3831-3842. doi: 10.1021/acs.jcim.0c00197. Epub 2020 Aug 13.
4
Using Neural Network Force Fields to Ascertain the Quality of Simulations of Liquid Water.
J Phys Chem B. 2021 Sep 30;125(38):10772-10778. doi: 10.1021/acs.jpcb.1c04372. Epub 2021 Sep 20.
5
Interatomic force from neural network based variational quantum Monte Carlo.
J Chem Phys. 2022 Oct 28;157(16):164104. doi: 10.1063/5.0112344.
6
Hydrogen bonding and stacking of DNA bases: a review of quantum-chemical ab initio studies.
J Biomol Struct Dyn. 1996 Aug;14(1):117-35. doi: 10.1080/07391102.1996.10508935.
7
Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
J Phys Condens Matter. 2008 Feb 13;20(6):060301. doi: 10.1088/0953-8984/20/06/060301. Epub 2008 Jan 24.
8
Aromatic Base Stacking in DNA: From ab initio Calculations to Molecular Dynamics Simulations.
J Biomol Struct Dyn. 2000;17 Suppl 1:1-24. doi: 10.1080/07391102.2000.10506597.
9
Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.
Acc Chem Res. 2021 Oct 5;54(19):3679-3690. doi: 10.1021/acs.accounts.1c00387. Epub 2021 Sep 22.
10
E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials.
Nat Commun. 2022 May 4;13(1):2453. doi: 10.1038/s41467-022-29939-5.

引用本文的文献

1
Image super-resolution inspired electron density prediction.
Nat Commun. 2025 May 23;16(1):4811. doi: 10.1038/s41467-025-60095-8.
2
In Vivo Interactions of Nucleic Acid Nanostructures With Cells.
Adv Mater. 2025 Jan;37(2):e2314232. doi: 10.1002/adma.202314232. Epub 2024 Sep 12.
3
DNA damage and repair in the nucleosome: insights from computational methods.
Biophys Rev. 2024 Mar 12;16(3):345-356. doi: 10.1007/s12551-024-01183-9. eCollection 2024 Jun.
4
Building an ab initio solvated DNA model using Euclidean neural networks.
PLoS One. 2024 Feb 15;19(2):e0297502. doi: 10.1371/journal.pone.0297502. eCollection 2024.
5
Exploring protein-ligand binding affinity prediction with electron density-based geometric deep learning.
RSC Adv. 2024 Feb 2;14(7):4492-4502. doi: 10.1039/d3ra08650j. eCollection 2024 Jan 31.

本文引用的文献

2
Pushing the frontiers of density functionals by solving the fractional electron problem.
Science. 2021 Dec 10;374(6573):1385-1389. doi: 10.1126/science.abj6511. Epub 2021 Dec 9.
3
Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami.
Nucleic Acids Res. 2021 Oct 11;49(18):10265-10274. doi: 10.1093/nar/gkab762.
4
Random access DNA memory using Boolean search in an archival file storage system.
Nat Mater. 2021 Sep;20(9):1272-1280. doi: 10.1038/s41563-021-01021-3. Epub 2021 Jun 10.
5
Machine Learning of Analytical Electron Density in Large Molecules Through Message-Passing.
J Chem Inf Model. 2021 Jun 28;61(6):2658-2666. doi: 10.1021/acs.jcim.1c00227. Epub 2021 May 19.
6
An alternative approach to nucleic acid memory.
Nat Commun. 2021 Apr 22;12(1):2371. doi: 10.1038/s41467-021-22277-y.
7
Machine Learning Force Fields.
Chem Rev. 2021 Aug 25;121(16):10142-10186. doi: 10.1021/acs.chemrev.0c01111. Epub 2021 Mar 11.
10
Quantum chemical accuracy from density functional approximations via machine learning.
Nat Commun. 2020 Oct 16;11(1):5223. doi: 10.1038/s41467-020-19093-1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验