Maffeo Christopher, Yoo Jejoong, Aksimentiev Aleksei
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, IL 61801, USA Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, IL 61801, USA.
Department of Physics, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, IL 61801, USA Center for the Physics of Living Cells, University of Illinois at Urbana-Champaign, 1110 W Green Street, Urbana, IL 61801, USA Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 North Mathews Avenue, Urbana, IL 61801, USA
Nucleic Acids Res. 2016 Apr 20;44(7):3013-9. doi: 10.1093/nar/gkw155. Epub 2016 Mar 14.
The DNA origami method has brought nanometer-precision fabrication to molecular biology labs, offering myriads of potential applications in the fields of synthetic biology, medicine, molecular computation, etc. Advancing the method further requires controlling self-assembly down to the atomic scale. Here we demonstrate a computational method that allows the equilibrium structure of a large, complex DNA origami object to be determined to atomic resolution. Through direct comparison with the results of cryo-electron microscopy, we demonstrate de novo reconstruction of a 4.7 megadalton pointer structure by means of fully atomistic molecular dynamics simulations. Furthermore, we show that elastic network-guided simulations performed without solvent can yield similar accuracy at a fraction of the computational cost, making this method an attractive approach for prototyping and validation of self-assembled DNA nanostructures.
DNA折纸方法已将纳米精度制造引入分子生物学实验室,在合成生物学、医学、分子计算等领域具有无数潜在应用。要进一步推进该方法,需要将自组装控制到原子尺度。在此,我们展示了一种计算方法,该方法能够将大型复杂DNA折纸物体的平衡结构确定到原子分辨率。通过与冷冻电子显微镜结果直接比较,我们借助全原子分子动力学模拟从头重建了一个470万道尔顿的指针结构。此外,我们表明,在无溶剂条件下进行的弹性网络引导模拟可以以一小部分计算成本产生类似的精度,使该方法成为自组装DNA纳米结构原型设计和验证的有吸引力的方法。